20.09.2019

Доверительная вероятность доверительный интервал вероятности. Метод доверительных интервалов


Интервал

Рассмотренные точечные оценки параметров распределения дают оценку в виде числа, наиболее близкого к значению неизвестного параметра. Такие оценки используют только при большом числе измерений. Чем меньше объем выборки, тем легче допустить ошибку при выборе параметра. Для практики важно не только получить точечную оценку, но и определить интервал, называемый доверительным, между границами которого с заданной дове рителъной вероятностью

где q - уровень значимости; х н, х в - нижняя и верхняя границы интервала, находится истинное значение оцениваемого параметра.

В общем случае доверительные интервалы можно строить на основе неравенства Чебышева. При любом законе распределения случайной величины, обладающей моментами первых двух порядков, верхняя граница вероятности попадания отклонения случайной величины х от центра распределения Х ц в интервал tS x описывается неравенством Чебышева

где S x - оценка СКО распределения; t - положительное число.

Для нахождения доверительного интервала не требуется знать закон распределения результатов наблюдений, но нужно знать оценку СКО. Полученные с помощью неравенства Чебышева интервалы оказываются слишком широкими для практики. Так, доверительной вероятности 0,9 для многих законов распределений соответствует доверительный интервал 1,6S X . Неравенство Чебышева дает в данном случае 3,16S X . В связи с этим оно не получило широкого распространения.

В метрологической практике используют главным образом кван-тильные оценки доверительного интервала. Под 100P-процентным квантилем х р понимают абсциссу такой вертикальной линии, слева от которой площадь под кривой плотности распределения равна Р%. Иначе говоря, квантиль - это значение случайной величины (погрешности) с заданной доверительной вероятностью Р. Например, медиана распределения является 50%-ным квантилем х 0,5 .

На практике 25- и 75%-ный квантили принято называть сгибами, или квантилями распределения. Между ними заключено 50% всех возможных значений случайной величины, а остальные 50% лежат вне их. Интервал значений случайной величины х между х 0 05 и х 0 95 охватывает 90% всех ее возможных значений и называется интерквантильным промежутком с 90%-ной вероятностью. Его протяженность равна d 0,9 = х 0,95 - х 0,05 .

На основании такого подхода вводится понятие квантильных значений погрешности, т.е. значений погрешности с заданной доверительной вероятностью Р - границ интервала неопределенности ± D Д = ± (х р - х 1-р)/2 = ± d p /2. На его протяженности встречается Р% значений случайной величины (погрешности), a q = (1- Р)% общего их числа остаются за пределами этого интервала.

Для получения интервальной оценки нормально распределенной случайной величины необходимо:

Определить точечную оценку МО х̅ и СКО S x случайной величины по формулам (6.8) и (6.11) соответственно;

Найти верхнюю х в и нижнюю х н границы в соответствии с уравнениями

полученными с учетом (6.1). Значения х н и х в определяются из таблиц значений интегральной функции распределения F(t) или функции Лапласа Ф(1).

Полученный доверительный интервал удовлетворяет условию

где n - число измеренных значений; z p - аргумент функции Лапласа Ф(1), отвечающей вероятности Р/2. В данном случае z p называется квантильным множителем. Половина длины доверительного интервала называется доверительной границей погрешности результата измерений.

Пример 6.1. Произведено 50 измерений постоянного сопротивления. Определить доверительный интервал для МО значения постоянного сопротивления, если закон распределения нормальный с параметрами m x = R = 590 Ом, S x = 90 Ом при доверительной вероятности Р = 0,9.

Так как гипотеза о нормальности закона распределения не противоречит опытным данным, доверительный интервал определяется по формуле

Отсюда Ф(z р) = 0,45. Из таблицы, приведенной в приложении 1, находим, что z p = 1,65. Следовательно, доверительный интервал запишется в виде

Или 590 - 21 < R < 590 + 21. Окончательно 509 Ом < R < 611 Ом.

При отличии закона распределения случайной величины от нормального необходимо построить его математическую модель и определять доверительный интервал с ее использованием.

Рассмотренный способ нахождения доверительных интервалов справедлив для достаточно большого числа наблюдений n, когда s = S x . Следует помнить, что вычисляемая оценка СКО S x является лишь некоторым приближением к истинному значению s. Определение доверительного интервала при заданной вероятности оказывается тем менее надежным, чем меньше число наблюдений. Нельзя пользоваться формулами нормального распределения при малом числе наблюдений, если нет возможности теоретически на основе предварительных опытов с достаточно большим числом наблюдений определить СКО.

Расчет доверительных интервалов для случая, когда распределение результатов наблюдений нормально, но их дисперсия неизвестна, т.е. при малом числе наблюдений п, возможно выполнить с использованием распределения Стьюдента S(t,k). Оно описывает плотность распределения отношения (дроби Стьюдента):

где Q - истинное значение измеряемой величины. Величины х̅, S x . и S x ̅ вычисляются на основании опытных данных и представляют собой точечные оценки МО, СКО результатов измерений и СКО среднего арифметического значения.

Вероятность того, что дробь Стьюдента в результате выполненных наблюдений примет некоторое значение в интервале (- t p ; + t p)

где k - число степеней свободы, равное (п - 1). Величины t p (называемые в данном случае коэффициентами Стьюдента), рассчитанные с помощью двух последних формул для различных значений доверительной вероятности и числа измерений, табулированы (см. таблицу в приложении 1). Следовательно, с помощью распределения Стьюдента можно найти вероятность того, что отклонение среднего арифметического от истинного значения измеряемой величины не превышает

В тех случаях, когда распределение случайных погрешностей не является нормальным, все же часто пользуются распределением Стьюдента с приближением, степень которого остается неизвестной. Распределение Стьюдента применяют при числе измерений n < 30, поскольку уже при n = 20, ...,30 оно переходит в нормальное и вместо уравнения (6.14) можно использовать уравнение (6.13). Результат измерения записывается в виде: ; P = Р д, где Р д - конкретное значение доверительной вероятности. Множитель t при большом числе измерений n равен квантильному множителю z p . При малом n он равен коэффициенту Стьюдента.

Полученный результат измерения не является одним конкретным числом, а представляет собой интервал, внутри которого с некоторой вероятностью Р д находится истинное значение измеряемой величины. Выделение середины интервала х вовсе не предполагает, что истинное значение ближе к нему, чем к остальным точкам интервала. Оно может быть в любом месте интервала, а с вероятностью 1 - Р д даже вне его.

Пример 6.2. Определение удельных магнитных потерь для различных образцов одной партии электротехнической стали марки 2212 дало следующие результаты: 1,21; 1,17; 1,18; 1,13; 1,19; 1,14; 1,20 и 1,18 Вт/кг. Считая, что систематическая погрешность отсутствует, а случайная распределена по нормальному закону, требуется определить доверительный интервал при значениях доверительной вероятности 0,9 и 0,95. Для решения задачи использовать формулу Лапласа и распределение Стьюдента.

По формулам (6.8) в (6.11) находим оценки среднего арифметического значения и СКО результатов измерений. Они соответственно равны 1,18 и 0,0278 Вт/кг. Считая, что оценка СКО равна самому отклонению, находим:

Отсюда, используя значения функции Лапласа, приведенные в таблице приложения 1, определяем, что z p = 1,65. Для Р = 0,95 коэффициент z p =1,96. Доверительные интервалы, соответствующие Р = 0,9 и 0,95, равны 1,18 ± 0,016 и 1,18±0,019 Вт/кг.

По таблице приложения 1 находим, что t 0,9 = 1,9 и t 0,95 = 2,37. Отсюда доверительные интервалы соответственно равны 1,18±0,019 и 1,18±0,023 Вт/кг.

Точность оценки, доверительная вероятность (надежность)

Доверительный интервал

При выборке малого объема следует пользоваться интервальными оценками т.к. это позволяет избежать грубых ошибок, в отличие от точечных оценок.

Интервальной называют оценку, которая определяется двумя числами - концами интервала, покрывающего оцениваемый параметр. Интервальные оценки позволяют установить точность и надежность оценок.

Пусть найденная по данным выборки статистическая характеристика * служит оценкой неизвестного параметра. Будем считать постоянным числом (может быть и случайной величиной). Ясно, что * тем точнее определяет параметр в, чем меньше абсолютная величина разности | - * |. Другими словами, если >0 и | - * | < , то чем меньше, тем оценка точнее. Таким образом, положительное число характеризует точность оценки.

Однако статистические методы не позволяют категорически утверждать, что оценка * удовлетворяет неравенству | - *|<, можно лишь говорить о вероятности, с которой это неравенство осуществляется.

Надежностью (доверительной вероятностью) оценки по * называют вероятность, с которой осуществляется неравенство | - *|<. Обычно надежность оценки задается наперед, причем в качестве берут число, близкое к единице. Наиболее часто задают надежность, равную 0,95; 0,99 и 0,999.

Пусть вероятность того, что | - *|<, равна т.е.

Заменив неравенство | - *|< равносильным ему двойным неравенством -<| - *|<, или *- <<*+, имеем

Р(*- < <*+)=.

Доверительным называют интервал (*- , *+), который покрывает неизвестный параметр с заданной надежностью.

Доверительные интервалы для оценки математического ожидания нормального распределения при известном.

Интервальной оценкой с надежностью математического ожидания а нормально распределенного количественного признака Х по выборочной средней х при известном среднем квадратическом отклонении генеральной совокупности служит доверительный интервал

х - t(/n^?) < a < х + t(/n^?),

где t(/n^?)= - точность оценки, n - объем выборки, t - значение аргумента функции Лапласа Ф(t), при котором Ф(t)=/2.

Из равенства t(/n^?)=, можно сделать следующие выводы:

1. при возрастании объема выборки n число убывает и, следовательно, точность оценки увеличивается;

2. увеличение надежности оценки = 2Ф(t) приводит к увеличению t (Ф(t) -- возрастающая функция), следовательно, и к возрастанию; другими словами, увеличение надежности классической оценки влечет за собой уменьшение ее точности.

Пример. Случайная величина X имеет нормальное распределение с известным средним квадратическим отклонением =3. Найти доверительные интервалы для оценки неизвестного математического ожидания a по выборочным средним х, если объем выборки n = 36 и задана надежность оценки = 0,95.

Решение. Найдем t. Из соотношения 2Ф(t) = 0,95 получим Ф (t) = 0,475. По таблице находим t=1,96.

Найдем точность оценки:

точность доверительный интервал измерение

T(/n^?)= (1 ,96 . 3)/ /36 = 0,98.

Доверительный интервал таков: (х - 0,98; х + 0,98). Например, если х = 4,1, то доверительный интервал имеет следующие доверительные границы:

х - 0,98 = 4,1 - 0,98 = 3,12; х + 0,98 = 4,1+ 0,98 = 5,08.

Таким образом, значения неизвестного параметра а, согласующиеся с данными выборки, удовлетворяют неравенству 3,12 < а < 5,08. Подчеркнем, что было бы ошибочным написать Р (3,12 < а < 5,08) = 0,95. Действительно, так как а - постоянная величина, то либо она заключена в найденном интервале (тогда событие 3,12 < а < 5,08 достоверно и его вероятность равна единице), либо в нем не заключена (в этом случае событие 3,12 < а < 5,08 невозможно и его вероятность равна нулю). Другими словами, доверительную вероятность не следует связывать с оцениваемым параметром; она связана лишь с границами доверительного интервала, которые, как уже было указано, изменяются от выборки к выборке.

Поясним смысл, который имеет заданная надежность. Надежность = 0,95 указывает, что если произведено достаточно большое число выборок, то 95% из них определяет такие доверительные интервалы, в которых параметр действительно заключен; лишь в 5% случаев он может выйти за границы доверительного интервала.

Если требуется оценить математическое ожидание с наперед заданной точностью и надежностью, то минимальный объем выборки, который обеспечит эту точность, находят по формуле

Доверительные интервалы для оценки математического ожидания нормального распределения при неизвестном

Интервальной оценкой с надежностью математического ожидания а нормально распределенного количественного признака Х по выборочной средней х при неизвестном среднем квадратическом отклонении генеральной совокупности служит доверительный интервал

х - t()(s/n^?) < a < х + t()(s/n^?),

где s -«исправленное» выборочное среднее квадратическое отклонение, t() находят по таблице по заданным и n.

Пример. Количественный признак X генеральной совокупности распределен нормально. По выборке объема n=16 найдены выборочная средняя x = 20,2 и «исправленное» среднее квадратическое отклонение s = 0,8. Оценить неизвестное математическое ожидание при помощи доверительного интервала с надежностью 0,95.

Решение. Найдем t(). Пользуясь таблицей, по = 0,95 и n=16 находим t()=2,13.

Найдем доверительные границы:

х - t()(s/n^?) = 20,2 - 2,13 *. 0 ,8/16^? = 19,774

х + t()(s/n^?) = 20,2 + 2,13 * 0 ,8/16^? = 20,626

Итак, с надежностью 0,95 неизвестный параметр а заключен в доверительном интервале 19,774 < а < 20,626

Оценка истинного значения измеряемой величины

Пусть производится n независимых равноточных измерений некоторой физической величины, истинное значение а которой неизвестно.

Будем рассматривать результаты отдельных измерений как случайные величины Хl, Х2,…Хn. Эти величины независимы (измерения независимы). Имеют одно и то же математическое ожидание а (истинное значение измеряемой величины), одинаковые дисперсии ^2 (измерения равноточные) и распределены нормально (такое допущение подтверждается опытом).

Таким образом, все предположения, которые были сделаны при выводе доверительных интервалов, выполняются, и, следовательно, мы вправе использовать формулы. Другими словами, истинное значение измеряемой величины можно оценивать по среднему арифметическому результатов отдельных измерений при помощи доверительных интервалов.

Пример. По данным девяти независимых равноточных измерений физической величины найдены среднее арифметической результатов отдельных измерений х = 42,319 и «исправленное» среднее квадратическое отклонение s = 5,0. Требуется оценить истинное значение измеряемой величины с надежностью = 0,95.

Решение. Истинное значение измеряемой величины равно ее математическому ожиданию. Поэтому задача сводится к. оценке математического ожидания (при неизвестном) при помощи доверительного интервала покрывающего а с заданной надежностью = 0,95.

х - t()(s/n^?) < a < х + t()(s/n^?)

Пользуясь таблицей, по у = 0,95 и л = 9 находим

Найдем точность оценки:

t()(s/n^?) = 2 ,31 * 5/9^?=3.85

Найдем доверительные границы:

х - t()(s/n^?) = 42,319 - 3,85 = 38,469;

х + t()(s/n^?) = 42,319 +3,85 = 46,169.

Итак, с надежностью 0,95 истинное значение измеряемой величины заключено в доверительном интервале 38,469 < а < 46,169.

Доверительные интервалы для оценки среднего квадратического отклонения нормального распределения.

Пусть количественный признак X генеральной совокупности распределен нормально. Требуется оценить неизвестное генеральное среднее квадратическое отклонение по «исправленному» выборочному среднему квадратическому отклонению s. Для этого воспользуемся интервальной оценкой.

Интервальной оценкой (с надежностью) среднего квадратического отклонения о нормально распределенного количественного признака X по «исправленному» выборочному среднему квадратическому отклонению s служит доверительный интервал

s (1 -- q) < < s (1 + q) (при q < 1),

0 < < s (1 + q) (при q > 1),

где q находят по таблице по заданным n н.

Пример 1. Количественный признак X генеральной совокупности распределен нормально. По выборке объема n = 25 найдено «исправленное» среднее квадратическое отклонение s = 0,8. Найти доверительный интервал, покрывающий генеральное среднее квадратическое отклонение с надежностью 0,95.

Решение. По таблице по данным = 0,95 и n = 25 найдем q = 0,32.

Искомый доверительный интервал s (1 -- q) < < s (1 + q) таков:

0,8(1-- 0,32) < < 0,8(1+0,32), или 0,544 < < 1,056.

Пример 2. Количественный признак X генеральной совокупности распределен нормально. По выборке объема n=10 найдено «исправленное» среднее квадратическое отклонение s = 0,16. Найти доверительный интервал, покрывающий генеральное среднее квадратическое отклонение с надежностью 0,999.

Решение. По таблице приложения по данным = 0,999 и n=10 найдем 17= 1,80 (q > 1). Искомый доверительный интервал таков:

0 < < 0,16(1 + 1,80), или 0 < < 0,448.

Оценка точности измерений

В теории ошибок принято точность измерений (точность прибора) характеризовать с помощью среднего квадратического отклонения случайных ошибок измерений. Для оценки используют «исправленной» среднее квадратическое отклонение s. Поскольку обычно результаты измерений взаимно независимы, имеют одно и то же математическое ожидание (истинное значение измеряемой величины) и одинаковую дисперсию (в случае равноточных измерений), то теория, изложенная в предыдущем параграфе, применима для оценки точности измерений.

Пример. По 15 равноточным измерениям найдено «исправленное» среднее квадратическое отклонение s = 0,12. Найти точность измерений с надежностью 0,99.

Решение. Точность измерений характеризуется средним квадратическим отклонением случайных ошибок, поэтому задача сводится к отысканию доверительного интервала s (1 -- q) < < s (1 + q) , покрывающего с заданной надежностью 0,99

По таблице приложения по = 0,99 и n=15 найдем q = 0,73.

Искомый доверительный интервал

0,12(1-- 0,73) < < 0,12(1+0,73), или 0.03 < < 0,21.

Оценка вероятности (биномиального распределения) по относительной частоте

Интервальной оценкой (с надежностью) неизвестной вероятности p биномиального распределения по относительной частоте w служит доверительный интервал (с приближенными концами p1 и р2)

p1 < p < p2,

где n - общее число испытаний; m - число появлений события; w - относительная частота, равная отношению m/n; t - значение аргумента функции Лапласа, при котором Ф(t) = /2.

Замечание. При больших значениях n (порядка сотен) можно принять в качестве приближенных границ доверительного интервала

Ранее нами было рассмотрено определение доверительной вероятности для отдельного измерения X i с помощью табл. 1.1, то есть определение вероятности того, что X i не будет отклоняться от истинного значения более чем на величину ΔX.

Однако, наиболее важной задачей является определение величины отклонения от истинного значения X ист среднего арифметического результатов измерений. Для решения поставленной задачи также можно воспользоваться табл. 1.1, взяв, вместо величины σ величину σ , то есть у / (n 0.5) или с учетом (1.14), для конечного числа измерений

Средняя квадратичная ошибка среднего арифметического S n равна средней квадратичной ошибке отдельного результата, деленой на корень квадратный из числа измерений.

Это фундаментальный закон возрастания точности при росте наблюдений. Из него следует, что для повышения точности измерений в 2 раза необходимо увеличить число измерений в 4 раза. Однако этот вывод относится только к измерениям, в которых точность результата полностью определяется случайной ошибкой.

Обычно выполняется сравнительно небольшое число измерений для n которых определяется величина S n . Если при оценке доверительной вероятности считать, что значение S n совпадает с у и пользоваться табл. 1.1, то будем получать завышенные значения α. Из того, что σ является пределом S n при n → ∞, следует, что S n пропорциональна величине σ . Коэффициент пропорциональности зависит от числа измерений и отражает степень приближения S n к σ . На основании этого интервал ΔX можно представить в виде

Значения величины t αn , носящей название коэффициента Стьюдента, вычислены для различных значений n и α и приведены в табл. 1.2. Сравнивая приведенные в ней данные с данными табл. 1.1, легко убедиться, что при больших n величина t αn стремится к соответствующим значениям величины ε. Это естественно, так как с увеличением n S n стремится к σ .

Используя коэффициенты Стьюдента, мы можем переписать равенство (1.14) в виде

Пользуясь этим соотношением и табл. 1.2, легко определить доверительные интервалы и доверительные вероятности при любом небольшом числе измерений. После выполнения измерений должны быть известны все величины, входящие в это выражение - одни из них могут быть наперед заданы, другие необходимо определить.

Мерой точности результатов измерений является относительная погрешность (ошибка), обычно выражаемая в процентах (%):


Величину ϕ = 1/δ, обратную относительной погрешности называют точностью измерений.

Используя таблицу коэффициентов Стьюдента, можно решить и обратную задачу: по известной абсолютной погрешности измерительного прибора и заданной величине надежности определить необходимое число измерений в серии.

ПРИМЕНЕНИЕ ТЕОРИИ ВЕРОЯТНОСТИ К СТАТИСТИКЕ.

1. Основные понятия.

2. Определение неизвестной функции распределения.

3. Определение неизвестных параметров распределения.

4. Доверительный интервал. Доверительная вероятность.

5. Применение критерия Стьюдента для сравнения генеральных

совокупностей.

6. Элементы теории корреляции.

7. Проверка гипотезы о нормальном распределении генеральной

совокупности. Критерий согласия Пирсона.

Основные понятия.

Математическая статистика - это раздел математики, в котором изучаются методы обработки и анализа экспериментальных данных, полученных в результате наблюдений над массовыми случайными событиями, явлениями.

Наблюдения, проводимые над объектами, могут охватывать всех членов изучаемой совокупности без исключения и могут ограничиваться обследованиями лишь некоторой части членов данной совокупности. Первое наблюдение называется сплошным или полным, второе частичным или выборочным .

Естественно, что наиболее полную информацию дает сплошное наблюдение, однако к нему прибегают далеко не всегда. Во-первых, сплошное наблюдение очень трудоемко, а во-вторых, часто бывает практически невозможно или даже нецелесообразно. Поэтому в подавляющем большинстве случаев прибегают к выборочному исследованию.

Совокупность, из которой некоторым образом отбирается часть ее членов для совместного изучения, называется генеральной совокупностью , а отобранная тем или иным способом часть генеральной совокупности - выборочная совокупность или выборка .

Объем генеральной совокупности теоретически ничем неограничен , на практике же он всегда ограничен.

Объем выборки может быть большим или малым, но он не может быть меньше двух.

Отбор в выборку можно проводить случайным способом (по способу жеребьевки или лотереи). Либо планово, в зависимости от задачи и организации обследования. Для того, чтобы выборка была представительной, необходимо обращать внимание на размах варьирования признака и согласовывать с ним объем выборки.

2. Определение неизвестной функции распределения.

Итак, мы сделали выборку. Разобьем диапазон наблюдаемых значений на интервалы , , …. одинаковой длины . Для оценки необходимого числа интервалов можно использовать следующие формулы:

Далее пусть m i - число наблюдаемых значений , попавших в i -ый интервал. Разделив m i на общее число наблюдений n , получим частоту , соответствующую i -ому интервалу: , причем . Составим следующую таблицу:

Номер интервала Интервал m i
m 1
m 2
... ... ... ...
k m k

которая называется статистическим рядом . Эмпирической (или статистической ) функцией распределения случайной величины называется частота события, заключающегося в том, что величина в результате опыта примет значение, меньшее x :

На практике достаточно найти значения статистической функции распределения F * (x) в точках , которые являются границами интервалов статистического ряда:

(5.2)

Следует заметить, что при и при . Построив точки и соединив их плавной кривой, получим приближенный график эмпирической функции распределения (рис. 5.1). Используя закон больших чисел Бернулли, можно доказать, что при достаточно большом числе испытаний с вероятностью, близкой к единице, эмпирическая функция распределения отличается сколь угодно мало от неизвестной нам функции распределения случайной величины .

Часто вместо построения графика эмпирической функции распределения поступают следующим образом. На оси абсцисс откладывают интервалы , ,…. . На каждом интервале строят прямоугольник, площадь которого равна частоте , соответствующей данному интервалу. Высота h i этого прямоугольника равна , где - длинна каждого из интервалов. Ясно, что сумма площадей всех построенных прямоугольников равна единице.

Рассмотрим функцию , которая в интервале постоянна и равна . График этой функции называется гистограммой . Он представляет собой ступенчатую линию (рис. 5.2). С помощью закона больших чисел Бернулли можно доказать, что при малых и больших с практической достоверностью как угодно мало отличается от плотности распределения непрерывной случайной величины .

Таким образом на практике определяется вид неизвестной функции распределения случайной величины.

3. Определение неизвестных параметров распределения.

Таким образом мы получили гистограмму, которая дает наглядность. Наглядность представленных результатов позволяет сделать различные заключения, суждения об исследуемом объекте.

Однако на этом обычно не останавливаются, а идут дальше, анализируя данные на проверку определенных предположений относительно возможных механизмов изучаемых процессов или явлений.

Несмотря на то, что данных в каждом обследовании сравнительно немного, мы бы хотели, чтобы результаты анализа достаточно хорошо описывали бы все реально существующее или мыслимое множество (т.е. генеральную совокупность).

Для этого делают некоторые предположения о том, как вычисленные на основе экспериментальных данных (выборке) показатели соотносятся с параметрами генеральной совокупности.

Решение этой задачи составляет главную часть любого анализа экспериментальных данных и тесно связано с использованием ряда теоретических распределений, рассмотренных выше.

Широкое использование в статистических выводах нормального распределения имеет под собой как эмпирическое, так и теоретическое обоснование.

Во-первых, практика показывает, что во многих случаях нормальное распределение действительно является довольно точным представлением экспериментальных данных.

Во-вторых, теоретически показано, что средние значения интервалов гистограмм распределены по закону, близкому к нормальному.

Однако следует четко представлять, что нормальное распределение - это лишь чисто математический инструмент и совсем необязательно, чтобы реальные экспериментальные данные точно описывались нормальным распределением. Хотя во многих случаях, допуская небольшую ошибку, можно говорить, что данные распределены нормально.

Ряд показателей, такие как среднее, дисперсия и т.д., характеризуют выборку и называются статистиками. Такие же показатели, но относящиеся к генеральной совокупности в целом, называются параметрами. Таким образом, можно сказать, что статистики служат для оценки параметров.

Генеральной средней называется среднее арифметическое значений генеральной совокупности объема :

Выборочной средней называется среднее арифметическое выборки объема :

(5.4)

если выборка имеет вид таблицы.

Выборочную среднюю принимают в качестве оценки генеральной средней.

Генеральной дисперсией называется среднее арифметическое квадратов отклонения значений генеральной совокупности от их среднего значения :

Генеральным средним квадратическим отклонением называется корень квадратный из генеральной дисперсии: .

Выборочной дисперсией называется среднее арифметическое квадратов отклонения значений выборки от их среднего значения :

Выборочное среднее квадратическое отклонение определяется как .

Для лучшего совпадения с результатами экспериментов, вводят понятие эмпирической (или исправленной) дисперсии :

Для оценки генерального среднего квадратического отклонения служит исправленное среднее квадратическое отклонение, или эмпирический стандарт :

(5.5)

В случае, когда все значения выборки различны, т.е. , , формулы для и принимают вид:

(5.6)

Доверительный интервал. Доверительная вероятность.

Различные статистики, получаемые результате вычислений, представляют собой точечные оценки соответствующих параметров генеральной совокупности.

Если из генеральной совокупности извлечь некоторое количество выборок и для каждой из них найти интересующие нас статистики, то вычисленные значения будут представлять собой случайные величины, имеющие некоторый разброс вокруг оцениваемого параметра.

Но, как правило, в результате эксперимента в распоряжении исследователя имеется одна выборка. Поэтому значительный интерес представляет получение интервальной оценки, т.е. некоторого интервала, внутри которого, как можно предположить, лежит истинное значение параметра.

Вероятности, признанные достаточными для уверенных суждениях о параметрах генеральной совокупности на основании статистик, называются доверительными.

Для примера рассмотрим как оценку параметра .

Часто оценщику приходится анализировать рынок недвижимости того сегмента, в котором располагается объект оценки. Если рынок развит, проанализировать всю совокупность представленных объектов бывает сложно, поэтому для анализа используется выборка объектов. Не всегда эта выборка получается однородной, иногда требуется очистить ее от экстремумов - слишком высоких или слишком низких предложений рынка. Для этой цели применяется доверительный интервал . Цель данного исследования - провести сравнительный анализ двух способов расчета доверительного интервала и выбрать оптимальный вариант расчета при работе с разными выборками в системе estimatica.pro.

Доверительный интервал - вычисленный на основе выборки интервал значений признака, который с известной вероятностью содержит оцениваемый параметр генеральной совокупности.

Смысл вычисления доверительного интервала заключается в построении по данным выборки такого интервала, чтобы можно было утверждать с заданной вероятностью, что значение оцениваемого параметра находится в этом интервале. Другими словами, доверительный интервал с определенной вероятностью содержит неизвестное значение оцениваемой величины. Чем шире интервал, тем выше неточность.

Существуют разные методы определения доверительного интервала. В этой статье рассмотрим 2 способа:

  • через медиану и среднеквадратическое отклонение;
  • через критическое значение t-статистики (коэффициент Стьюдента).

Этапы сравнительного анализа разных способов расчета ДИ:

1. формируем выборку данных;

2. обрабатываем ее статистическими методами: рассчитываем среднее значение, медиану, дисперсию и т.д.;

3. рассчитываем доверительный интервал двумя способами;

4. анализируем очищенные выборки и полученные доверительные интервалы.

Этап 1. Выборка данных

Выборка сформирована с помощью системы estimatica.pro. В выборку вошло 91 предложение о продаже 1 комнатных квартир в 3-ем ценовом поясе с типом планировки «Хрущевка».

Таблица 1. Исходная выборка

Цена 1 кв.м., д.е.

Рис.1. Исходная выборка



Этап 2. Обработка исходной выборки

Обработка выборки методами статистики требует вычисления следующих значений:

1. Среднее арифметическое значение

2. Медиана - число, характеризующее выборку: ровно половина элементов выборки больше медианы, другая половина меньше медианы

(для выборки, имеющей нечетное число значений)

3. Размах - разница между максимальным и минимальным значениями в выборке

4. Дисперсия - используется для более точного оценивания вариации данных

5. Среднеквадратическое отклонение по выборке (далее - СКО) - наиболее распространённый показатель рассеивания значений корректировок вокруг среднего арифметического значения.

6. Коэффициент вариации - отражает степень разбросанности значений корректировок

7. коэффициент осцилляции - отражает относительное колебание крайних значений цен в выборке вокруг средней

Таблица 2. Статистические показатели исходной выборки

Коэффициент вариации, который характеризует однородность данных, составляет 12,29%, однако коэффициент осцилляции слишком велик. Таким образом, мы можем утверждать, что исходная выборка не является однородной, поэтому перейдем к расчету доверительного интервала.

Этап 3. Расчёт доверительного интервала

Способ 1. Расчёт через медиану и среднеквадратическое отклонение.

Доверительный интервал определяется следующим образом: минимальное значение - из медианы вычитается СКО; максимальное значение - к медиане прибавляется СКО.

Таким образом, доверительный интервал (47179 д.е.; 60689 д.е.)

Рис. 2. Значения, попавшие в доверительный интервал 1.



Способ 2. Построение доверительного интервала через критическое значение t-статистики (коэффициент Стьюдента)

С.В. Грибовский в книге «Математические методы оценки стоимости имущества» описывает способ вычисления доверительного интервала через коэффициент Стьюдента. При расчете этим методом оценщик должен сам задать уровень значимости ∝, определяющий вероятность, с которой будет построен доверительный интервал. Обычно используются уровни значимости 0,1; 0,05 и 0,01. Им соответствуют доверительные вероятности 0,9; 0,95 и 0,99. При таком методе полагают истинные значения математического ожидания и дисперсии практически неизвестными (что почти всегда верно при решении практических задач оценки).

Формула доверительного интервала:

n - объем выборки;

Критическое значение t- статистики (распределения Стьюдента) с уровнем значимости ∝,числом степеней свободы n-1,которое определяется по специальным статистическим таблицам либо с помощью MS Excel ( →"Статистические"→ СТЬЮДРАСПОБР);

∝ - уровень значимости, принимаем ∝=0,01.

Рис. 2. Значения, попавшие в доверительный интервал 2.

Этап 4. Анализ разных способов расчета доверительного интервала

Два способа расчета доверительного интервала - через медиану и коэффициент Стьюдента - привели к разным значениям интервалов. Соответственно, получилось две различные очищенные выборки.

Таблица 3. Статистические показатели по трем выборкам.

Показатель

Исходная выборка

1 вариант

2 вариант

Среднее значение

Дисперсия

Коэф. вариации

Коэф. осциляции

Количество выбывших объектов, шт.

На основании выполненных расчетов можно сказать, что полученные разными методами значения доверительных интервалов пересекаются, поэтому можно использовать любой из способов расчета на усмотрение оценщика.

Однако мы считаем, что при работе в системе estimatica.pro целесообразно выбирать метод расчета доверительного интервала в зависимости от степени развитости рынка:

  • если рынок неразвит, применять метод расчета через медиану и среднеквадратическое отклонение, так как количество выбывших объектов в этом случае невелико;
  • если рынок развит, применять расчет через критическое значение t-статистики (коэффициент Стьюдента), так как есть возможность сформировать большую исходную выборку.

При подготовке статьи были использованы:

1. Грибовский С.В., Сивец С.А., Левыкина И.А. Математические методы оценки стоимости имущества. Москва, 2014 г.

2. Данные системы estimatica.pro