20.09.2019

Закон бернулли в авиации. Закон бернулли как следствие закона сохранения энергии



Возьмём трубу, через которую протекает жидкость. Наша труба не одинакова по всей длине, а имеет различный диаметр сечения. Закон Бернулли выражается в том, что несмотря на различный диаметр, через любое сечение в этой трубе за одно и тоже время протекает одинаковый объём жидкости.

Т.е. сколько жидкости проходит через одно сечение трубы за некоторое время, столько же ее должно пройти за такое же время через любое другое сечение. А так как объём жидкости не изменяется, а сама жидкость практически не сжимается, то изменяется что-то другое.

В более узкой части трубы скорость движения жидкости выше, а давление ниже. И наоборот, в широких частях трубы скорость ниже, а давление выше.



Изменяется давление жидкости и её скорость. Если трубу, по которой течет жидкость, снабдить впаянными в нее открытыми трубками-манометрами (рис. 209), то можно будет наблюдать распределение давления вдоль трубы.

Все сказанное о движении жидкости по трубам относится и к движению газа. Если скорость течения газа не слишком велика и газ не сжимается настолько, чтобы изменялся его объем, и если, кроме того, пренебречь трением, то закон Бернулли верен и для газовых потоков. В узких частях труб, где газ движется быстрее, давление его меньше, чем в широких частях.


Применительно аэродинамике закон Бернулли выражается в том, что набегающий на крыло воздушный поток имеет различную скорость и давление под крылом и над крылом, ввиду чего возникает подъёмная сила крыла

Проведём простой эксперимент. Возьмём небольшой листок бумаги и разместим его прямо перед собой таким образом:

А затем подуем над его поверхностью, то листок бумаги, попреки ожиданиям, вместо того, чтобы прогнуться ещё больше по направлению к Земле, наоборот выпрямится. Всё дело в том, что выдувая воздух над поверхностью листка мы уменьшаем его давление, в то время как давление воздуха под листком остаётся прежним. Получается, что над листком область пониженного давления, а под листком повышенного. Воздушные массы пытаются «перебраться» из области высокого давления в область низкого, и это приводит к тому, что листок выпрямляется.

Можно провести и другой опыт. Взяв 2 листка бумаги и разместив их перед собой следующим образом:

А затем подув в область между ними, листки бумаги, вопреки нашим ожиданиям, вместо того, чтобы отодвинуться друг от друга, наоборот приблизятся. Здесь мы наблюдаем тот же самый эффект. Воздушные массы с внешних сторон листком имеют большее давление, нежели ускоренный нами воздух между листками. Это и приводит к тому, что листки бумаги притягиваются к друг другу.



Этот же принцип используют для осуществления своих полётов парапланы, дельтапланы, самолёты, планёры, вертолёты и др. летательные аппараты. Именно это позволяет взлететь вверх многотонному пассажирскому самолёту.

Как мы упоминали, в трубах не очень длинных и достаточно широких трение настолько невелико, что им можно пренебречь. При этих условиях падение давления так мало, что в трубе постоянного сечения жидкость в манометрических трубках находится практически на одной высоте. Однако, если труба имеет в разных местах неодинаковое сечение, то даже в тех случаях, когда трением можно пренебречь, опыт обнаруживает, что статическое давление в разных местах различно.

Возьмем трубу неодинакового сечения (рис. 311) и будем пропускать через нее постоянный поток воды. По уровням в манометрических трубках мы увидим, что в суженных местах трубы статическое давление меньше, чем в широких. Значит, при переходе из широкой части трубы в более узкую степень сжатия жидкости уменьшается (давление уменьшается), а при переходе из более узкой части в широкую - увеличивается (давление увеличивается).

Рис. 311. В узких частях трубы статическое давление текущей жидкости меньше, чем в широких

Это объясняется тем, что в широких частях трубы жидкость должна течь медленнее, чем в узких, так как количество жидкости, протекающей за одинаковые промежутки времени, одинаково для всех сечений трубы. Поэтому при переходе из узкой части трубы в широкую скорость жидкости уменьшается: жидкость тормозится, как бы натекая на препятствие, и степень сжатия ее (а также ее давление) растет. Наоборот, при переходе из широкой части трубы в узкую скорость жидкости увеличивается и сжатие ее уменьшается: жидкость, ускоряясь, ведет себя подобно распрямляющейся пружине.

Итак, мы видим, что давление жидкости, текущей по трубе, больше там, где скорость движения жидкости меньше, и обратно: давление меньше там, где скорость движения жидкости больше. Эту зависимость между скоростью жидкости и ее давлением называют законом Бернулли по имени швейцарского физика и математика Даниила Бернулли (1700-1782).

Закон Бернулли имеет место и для жидкостей и для газов. Он остается в силе и для движения жидкости, не ограниченного стенками трубы, - в свободном потоке жидкости. В этом случае закон Бернулли нужно применять следующим образом.

Допустим, что движение жидкости или газа не изменяется с течением времени (установившееся течение). Тогда мы можем представить себе внутри потока линии, вдоль которых происходит движение жидкости. Эти линии называются линиями тока; они разбивают жидкость на отдельные струи, которые текут рядом, не смешиваясь. Линии тока можно сделать видимыми, вводя в поток воды жидкую краску через тонкие трубочки. Струйки краски располагаются вдоль линий тока. В воздухе для получения видимых линий тока можно воспользоваться струйками дыма. Можно показать, что закон Бернулли применим для каждой струи в отдельности: давление больше в тех местах струи, где скорость в ней меньше и, следовательно, где сечение струи больше, и обратно. Из рис. 311 видно, что сечение струи велико в тех местах, где линии тока расходятся; там же, где сечение струи меньше, линии тока сближаются. Поэтому закон Бернулли можно сформулировать еще так: в тех местах потока, где линии тока гуще, давление меньше, а в тех местах, где линии тока реже, давление больше.

Возьмем трубу, имеющую сужение, и будем пропускать по ней с большой скоростью воду. Согласно закону Бернулли, в суженной части давление будет понижено. Можно так подобрать форму трубы и скорость потока, что в суженной части давление воды будет меньше атмосферного. Если теперь присоединить к узкой части трубы отводную трубку (рис. 312), то наружный воздух будет засасываться в место с меньшим давлением: попадая в струю, воздух будет уноситься водой. Используя это явление, можно построить разрежающий насос - так называемый водоструйный насос. В изображенной на рис. 313 модели водоструйного насоса засасывание воздуха производится через кольцевую щель 1, вблизи которой вода движется с большой скоростью. Отросток 2 присоединяется к откачиваемому сосуду. Водоструйные насосы не имеют движущихся твердых частей (как, например, поршень в обычных насосах), что составляет одно из их преимуществ.

Рис. 312. Воздух засасывается в узкую часть трубы, где давление меньше атмосферного

Рис. 313. Схема водоструйного насоса

Будем продувать воздух по трубке с сужением (рис. 314). При достаточной скорости воздуха давление в суженной части трубки будет ниже атмосферного. Жидкость из сосуда будет засасываться в боковую трубку. Выходя из трубки, жидкость будет распыляться струей воздуха. Этот прибор называется пульверизатором - распылителем.

Рис. 314. Пульверизатор

  • Изучить законы движения жидкостей и газов на основе закона сохранения энергии, дать определение принципа Бернулли, рассмотреть проявление закона Бернулли в природе и использование в технике и быту.
  • Развивать знания, умения, навыки учащихся, способы мышления, физическую речь, память.
  • Формировать научное мировоззрение, воспитывать интерес и любознательность учащихся, способность самостоятельно наблюдать явления и делать выводы.

Демонстрации:

  1. Полоски бумаги.
  2. Компьютерная модель (диск “Открытая физика”).
  3. Шарики для тенниса, фен.
  4. Цилиндр Магнуса.
  5. Пульверизатор.
  6. Свеча и воронка.
  7. Рисунки.
  1. Актуализация темы.
  2. Скорость движения жидкости по трубе переменного сечения.
  3. Давление внутри потока.
  4. Применение принципа Бернулли в технике, природе, быту.

Лекцию дети фиксируют в тетрадях в таблице, которую мы называем “Ромашкой”. В таблице три столбца: “Известное”, “Новое”, “Специфическое”. Каждый ребенок вносит услышанную информацию в столбец по своему усмотрению, в конце занятия дети обмениваются тетрадями, еще раз прорабатывая материал, вспоминая, что упустил; или выступают с комментариями по просьбе учителя по содержанию одного из столбцов, например, “А мне это было известно…”

До сих пор мы рассматривали движение твердых тел. Знание законов сохранения дает нам возможность познакомиться с основными закономерностями движения жидкостей и газов, которое очень распространено в природе и технике:

  1. Движется воздух в земной атмосфере;
  2. Движется вода в океанах и морях, озерах, реках;
  3. Движется кровь в кровеносных сосудах;
  4. Движутся питательные соки в капиллярах растений;
  5. Движутся вода, нефть, газ в трубопроводах.

Но перед тем, как мы приступим к изучению гидроаэродинамики, дадим слово героям Артура Конан Дойла - Шерлоку Холмсу и доктору Ватсону.

(Сценка в исполнении двух мальчиков.) Холмс читает утреннюю “Таймс”, Ватсон перелистывает какой-то фолиант.

В каком банке вы храните свои деньги, Ватсон?

В “Сити-банке”, Холмс, очень надежный банк, уверяю Вас.

Ваш “надежный банк”, Ватсон, вчера был ограблен!

Не может этого быть, ведь там все мои сбережения на свадьбу!

Вот послушайте, что пишет “Лондонская Таймс”: “Пронесшийся вчера над Лондоном ураган выбил все стекла в здании Сити- банка, чем не преминули воспользоваться злоумышленники. Они проникли через разбитые окна в банк и вынесли все деньги. Прибывший на место происшествия инспектор Лестрейд подтвердил это предположение директора банка, так как действительно все окна выбиты, а пол усыпан битым стеклом. Директор банка приносит свои извинения вкладчикам”.

Ватсон: (Обреченно)

Это называется – деньги на ветер!

Дорогой Ватсон, если бы вы изучали физику, вы бы уже знали, у кого ваши деньги!..

Учитель: Холмс, в отличие от Ватсона, изучал законы гидроаэродинамики. Познакомимся с ними и мы.

Пусть жидкость течет без трения по трубе переменного сечения:

Иначе говоря, через все сечения трубы проходят одинаковые объемы жидкости, иначе жидкости пришлось бы либо разорваться где-нибудь, либо сжаться, что невозможно. За время t через сечение S 1 пройдет объем

, а через сечение S 2 – объем . Но так как эти объемы равны, то

Скорость течения жидкости в трубе переменного сечения обратно пропорциональна площади поперечного сечения. Если площадь поперечного сечения увеличилась в 4 раза, то скорость уменьшилась во столько же раз и наоборот, во сколько раз уменьшилось сечение трубы, во столько же раз увеличилась скорость течения жидкости или газа. Где наблюдается такое явление изменения скорости? Например, на реке, впадающей в море, наблюдается уменьшение скорости, вода из ванны - скорость увеличивается, мы наблюдаем турбулентное течение воды. Если скорость невелика, то жидкость течет как бы разделенная на слои (“ламиниа” – слой). Течение называется ламинарным.

Вывод 1: В широкой части трубы скорость меньше, чем в узкой части во столько раз, во сколько раз площадь поперечного сечения 1 больше 2.

Итак, выяснили, что при течении жидкости из узкой части в широкую или наоборот, скорость изменяется, следовательно, жидкость движется с ускорением. А что является причиной возникновения ускорения? (Сила (второй закон Ньютона)). Какая же сила сообщает жидкости ускорение? Этой силой может быть только разность сил давления жидкости в широкой и узкой частях трубы.

К этому выводу впервые пришел академик Петербургской академии наук Даниил Бернулли в 1726 году и закон теперь носит его имя.

Уравнение Бернулли показывает, что давление текущей жидкости или газа больше там, где скорость меньше, и давление меньше там, где скорость течения больше. Этот казалось бы парадоксальный вывод подтверждается прямыми опытами.

Опыт 1.

А) У вас на столах есть листки бумаги. Возьмите один из них за короткую сторону и подуйте вдоль листа. Лист… поднимается вверх. Почему? Потому что в струе воздуха, продуваемом над листом скорость больше, чем под листом, а давление меньше, чем под листом. Эта разность давлений и поднимает лист вверх! Б)Если продувать воздух между двумя листами, то они станут сближаться. Так как давление между листами меньше, чем снаружи, и внешнее избыточное давление сближает листки.

Если взять трубку переменного сечения и присоединить к ней манометрические трубки, то мы увидим, что в узких частях трубки, где скорость больше, давление будет меньше и уровень жидкости в манометре будет невысоким, наоборот, в широкой части трубы, там где скорость мала, давление большое и уровень жидкости в трубке будет больше. (Компьютерная модель)

Опыт 2. Проделаем похожий опыт. Будем продувать с помощью фена воздух между двумя теннисными шарами - что произойдет? (шарики сближаются). Шарики станут сближаться. Если в струю воздуха положить легкий теннисный шарик, то он будет “плясать” в струе, даже если её расположить слегка наклонно. Почему? (Давление в комнате будет велико по отношению к давлению воздуха в струе, и разница давлений будет удерживать шарик в струе.)

Опыт 3. Склеим из тонкой бумаги цилиндр, обвяжем его ленточкой и резко дернув палочку, заставим цилиндр вращаться против часовой стрелки и двигаться вперед. Цилиндр при этом поднимается почти до потолка, а затем плавно опускается на пол. Почему это происходит?

(Цилиндр, вращаясь, движется вперед. При вращении цилиндра в движение приходит и прилежащий к нему слой воздуха. Но под цилиндром вектор скорости воздуха антипараллелен вектору скорости цилиндра, а над цилиндром – сонаправлен с ним. Поэтому результирующая скорость воздуха под цилиндром меньше, чем над ним, следовательно, давление больше, и разность давлений поднимает цилиндр вверх, а не по параболе, как мы привыкли, в механике.)

Это явление носит название эффекта Магнуса , по имени ученого, открывшего и исследовавшего его экспериментально. Эффект Магнуса проявляется в таких природных явлениях, как образование смерчей над поверхностью океана. В месте встречи двух воздушных масс с разными температурами и скоростями возникает вращающийся вокруг вертикальной оси столб воздуха и несется вперед. В поперечнике такой столб может достигать сотен метров и несется со скоростью около 100м/с. Из-за быстрого вращения воздух отбрасывается к периферии вихря и давление внутри него понижается. Когда такой столб приближается к воде, то засасывает ее в себя, представляя огромную опасность для судов. Это же явление знают железнодорожники и предписывают встречным поездам сбрасывать скорость. Зачем? (Дело в том, что перед идущим поездом создается область сжатого воздуха (большое давление), а за другим поездом создается область пониженного давления. При этом, во-первых, могут разбиться стекла в вагонах из-за большой разности давлений, во-вторых, если человек или животное окажется между путями в этот момент, то его может затянуть под поезд, поэтому необходимо помнить правила поведения в таких ситуациях: нужно либо обхватить покрепче опору – столб, например, либо распластаться на земле и сильнее вжаться в нее всем телом, чтобы избежать трагедии.)

Опыт 4. (Обсуждение и рисунок)

В дождливую и ветреную погоду, наверное, каждый из вас замечал, что раскрытые зонтики иногда “выворачиваются наизнанку”. Почему это происходит? Поток воздуха, набегающий на изогнутую поверхность зонта, движется по руслу своеобразной сужающейся трубы с большей скоростью, чем воздух в нижней части, следовательно, давление снизу больше, чем вверху, и зонт выворачивается!

Опыт 5. (Обсуждение) . Аналогичное действие производит на крыши домов сильный ураган. Кстати, по поводу урагана. Так у кого же деньги, мистер Холмс? (Ураган, пронесшийся по улицам Лондона, должен был привести к тому, что стекла в банке выпали бы на улицу, вследствие явления Бернулли. А так как пол в банке был предусмотрительно посыпан стеклом, то, видимо, деньги украл тот, у кого были ключи от банка.)

Спасибо, мистер Холмс.

Предлагаю продолжить ролевую игру. Класс делится на группы по три человека, каждой группе выдается задание с рисунком.

Задание 1. Вы – рабочий на английской шахте по добыче угля. Вас попросили закрыть вентиляционный люк специальным щитом. Вы сначала долго боролись со струей воздуха, которая не давала вам подойти к люку, а затем вдруг внезапно притянула вас с такой силой, что захлопнулась щитом, а вы получили тяжкие травмы. Пользуясь рисунком, объясните, пожалуйста, это странное явление. (Кстати, это после происшествия с вами ученые заинтересовались явлениями в струе жидкости или газа.) (В струе воздуха давление мало, а снаружи давление больше, большая разность давлений “толкнула” рабочего в люк и захлопнула его).

Задание 2. Вы – капитан первого самого большого корабля в мире “Олимпик”. Осенью 1912 года вы шли в открытом море, а на расстоянии нескольких метров от вас в том же направлении следовал броненосный крейсер “Гаук” с очень большой скоростью. Когда корабли приняли положение, как показано на рисунке, “Гаук” неожиданно повернулся носом к “Олимпику”, и, не слушаясь руля, пошел ему наперерез.

Произошло столкновение. Когда этот случай рассматривали в морском суде, вас обвинили в том, что вы не дали команду пропустить броненосец. В апреле этого же года затонул двойник вашего корабля – “Титаник”, который не сумел избежать столкновения с айсбергом. Как вы думаете, что произошло? (Пока не строились “плавучие города”, явление Бернулли не наблюдалось на море. В данном случае, между движущимися в одном направлении кораблями образовался канал с текущей в обратную сторону водой. А в струе воды давление меньше, чем вокруг, в покоящемся океане. Огромная разность давлений заставила более легкий корабль врезаться в “плавучий город” “Олимпик”.)

Задание 3. Вы – известный автогонщик Джим Холл. Однажды на гонках вы появились на машине, которую сами и усовершенствовали. Ваш “Чапараль” имел в задней части горизонтальное крыло, плоскость которого была расположена под углом к горизонту, а также два вентилятора, которые засасывали воздух из-под днища и гнали его назад; сбоку автомобиль был закрыт щитками почти до самой дороги. Вас сначала подняли насмех, а когда вы выиграли гонку с большим отрывом, всех заинтересовало ваше изобретение. И сейчас машины часто делают с горизонтальным крылом сзади и с низкой посадкой. Объясните нам, что это дает?

(Воздух, протекающий в маленький просвет между дорогой и авто, как в сужающуюся трубу, ускоряется, давление под машиной уменьшается по сравнению с давлением воздуха над машиной, что ведет к улучшению сцепления шасси с дорогой, что позволяет не сбрасывать скорость на поворотах. Крыло позади автомобиля, обеспечивает “расширение трубы” для воздуха, обтекающего автомобиль сверху, скорость воздуха уменьшается, давление увеличивается, что также влияет на сцепление шасси с дорогой.)

Задание 4 Вы – известный исследователь морских глубин Жак Ив Кусто. В 1984 году по вашему заказу было построено судно Флеттнера (дата изобретения датируется 1925 годом), на палубе которого установлен вертикально большой цилиндр с лопастями, приводимый во вращение вокруг вертикальной оси небольшим двигателем. Не имея винта, судно может двигаться по ветру и против ветра. Вы назвали его “Калипсо”. Объясните, принцип движения вашего “ветрохода”. (Ветер, огибая вращающиеся цилиндры, “толкает” их вбок. При соответствующей ориентации судно начинает двигаться вперед по воде без паруса.)

Задание 5. Вы – Николай Егорович Жуковский. Вы разработали теорию подъемной силы крыла самолета, за что вас В.И. Ленин назвал “отцом русской авиации”. Расскажите нам, пожалуйста, почему несимметричная форма сечения крыла самолета, подобно крыльям птиц, позволяет взлетать самолетам? (Из-за несимметричности формы крыла воздух движется по его поверхности с разной скоростью, снизу возникает подъемная сила, равная разности давлений над и под крылом.)

Задание 6. Выизвестный футболист, вы знаете, что когда подают крученый мяч, т.н. “сухой лист”, то мяч летит по искривленной траектории, как заколдованный облетая футболистов, не знающих законов физики. Объясните, нам, в чем тут дело?

(См. эффект Магнуса.)

Работаем по рисункам, иллюстрирующим явления закона Бернулли. (Яйцо втягивается вверх в струю воды, вентиляционная труба с коническим колпаком, форма нор луговых собачек, окруженная конической насыпью, работа газовой горелки, пульверизатора, карбюратора, ветер под зданием, мошки на стекле движущегося автомобиля.)

А сейчас предлагаю соседям по парте обменяться лекциями и посмотреть, что упущено вами или вашим соседом из сегодняшнего урока.

Итог урока. На уроке мы познакомились с законом движения жидкостей и газов – законом Бернулли, в основу вывода которого положен закон сохранения энергии, поэтому этот закон и явления гидроаэродинамики следует рассматривать как следствие из закона сохранения энергии.

Выставление оценок за работу на уроке.

Спасибо за урок!

Рисунки для закрепления материала.

Литература.

  1. Н.М. Шахмаев, С.М. Шахмаев, Д.Ш. Шодиев “Физика – 9”
  2. Дж. Уокер “Физический фейерверк” (вопросы и ответы по физике) – Москва “Мир”, 1989г.
  3. Перельман “Занимательная физика”

Течения идеальной несжимаемой жидкости уравнение Бернулли имеет вид

,

В последнем уравнении все члены имеют размерность давления , p - статическое давление ; - динамическое давление ; hρg - весовой давление.

Если такие уравнения записать для двух сечений течения, то получим:

Для горизонтальной течения средние члены в левой и правой части уравнения сокращаются и оно принимает вид:

есть в сложившейся горизонтальной течения идеальной несжимаемой жидкости в каждом ее сечении сумма статического и динамического давлений будет постоянной. Так, в тех местах течения, где скорость жидкости больше (узкие сечения), ее динамическое давление увеличивается, а статическое уменьшается. На этом явлении основано действие струйных насосов, эжекторов, расходомеров Вентури и Пико, пульверизаторов .

Уравнение Бернулли является следствием закона сохранения энергии . Если жидкость не идеальная, то ее механическая энергия рассеивается и давление вдоль трубопровода, по которому течет такая жидкость, падает. Для реальной вязкой жидкости в правой части уравнений, следует добавить величину потерь давления Δр вт на гидравлическое сопротивление движению.

Уравнение Бернулли широко применяют для решения многих гидравлических задач в нефтегазовой делу.


1. В технике и быту

2. Примеры применения закона Бернулли

Трубка Вентури применяется для определения скорости течения в трубах с помощью измерения давления в двух разных точках трубопровода и, таким образом, помогает предотвратить последствия кавитации . Трубка Вентури постепенно сужает диаметр трубопровода. Такой сужающее отверстие ограничивает поток жидкости, что приводит разность давлений в точках измерения (в начале сужения и в узкой части). Базируется данное измерение на эффекте Вентури, формулу для которого можно получить из уравнение непрерывности и закона Бернулли:

где S - площадь взаимодействия жидкости с поверхностью трубки,


2.1. Трубка Пито

Трубка Пито применяется для измерения разности давлений в двух точках, то есть с помощью этой трубки можно найти динамическое давление. Для жидкостей и газов играет роль манометра , один конец которого направлен навстречу потоку, а другой выступает из него и подключен к прибору, который измеряет давление. Имеет вид буквы "L". Если перед отверстием A скорость уменьшается до значения , То

При установке избыточного давления в трубке избыточное давление вычисляется по формуле

где - Коэффициент, - Скорость вихря.


2.2. Формула Торричелли

Закон Торричелли показывает, что при истечении идеальной нестискувальнои жидкости из щели в боковой стенке или на дне сосуда жидкость приобретает скорость тела, падающего с определенной высоты. С помощью этого можно вычислить максимальный уровень утечки жидкости из сосуда. Для подтверждения можно воспользоваться законом Бернулли, выведя из него формулу Торричелли: ρgh + p 0 = (pV 2) / 2 + p 0, где p0 - атмосферное давление, h - высота столба жидкости в сосуде, V - скорость истечения жидкости. Отсюда V = √ 2gh.


2.3. Пульверизатор

В пульверизаторе применяется главный следствие закона Бернулли: с ростом скорости происходит рост динамического давления и падение статического давления. В капилляры пульверизатора вдувается воздух или пар. Вдувание снижает атмосферное давление в капилляре, и жидкость из баллона пульверизатора под действием большего атмосферного давления поднимается капилляром. Там она раздробляется струей воздуха.

2.4. Водоструйный насос

Водоструйный насос - резервуар, в который впаяны две трубки. Под действием давления в первую трубку протекает вода, попадая затем в другую трубку. В суженной части первой трубки возникает уменьшен давление, меньше атмосферного. Поэтому в резервуаре создается напряжение. Трубку подсоединяют к резервуару, который проходит в сосуд, из которого необходимо откачать воздух.

2.5. Карбюратор

Карбюратор - устройство в системе питания карбюраторных двигателей внутреннего сгорания, который применяется для смешивания бензина и воздуха. При движении поршня в такте впуска давление в цилиндре понижается. При этом окружающий воздух всасывается цилиндром через воздушную трубу карбюратора - диффузор . В узкой части диффузора, где давление соответственно наименьший расположен распылитель, из которого вытекает топливо. Топливо измельчается струей воздуха на маленькие капли и образуется горючая смесь.


2.6. Осушение болот

Осушение болот по принципу закона Бернулли проводилось очень давно. До болота подводили каналы от ближайшей реки. Вследствие большой разницы давлений между водой болота и водой из канала вода из канала "впитывала" воду из болота.

2.7. Ракета

В конструировании ракет также применяется закон Бернулли. Для создания тяги в ракете используется топливо, которое сжигают в камере сгорания. Газы образуют реактивную струю, который ускоряется, проходя через специальное сужение - сопло . Именно сужение сопла и является основной причиной ускорения реактивной струи газов и увеличения реактивной тяги.

2.8. Свисток

Свисток представляет собой пример использования закона Бернулли в газоструменевих излучателях звуковых волн. Вихревой свисток представляет собой цилиндрическую камеру, в подается поток воздуха через тангенциально расположенную трубку. Образовавшийся вихревой поток поступает в выходную трубку меньшего диаметра, расположенной на оси. Там интенсивность вихря резко повышается и давление в его центре становится значительно ниже атмосферного. Перепад давления периодически выравнивается за счет прорыва газов из атмосферы в выходную трубку и разрушения вихря.


2.9. Диск Рэлея

Диск Рэлея - прибор для измерения колебательной скорости частиц в звуковой волне и силы звука. Представляет собой тонкую пластинку круглой формы, из слюды или металла, подвешенную на тонкую кварцевую нить. Обычно диск размещают под углом 45 ? к направлению колебаний частиц среды, поскольку такое расположение чутко колебаниям. При распространении звуковых волн диск возвращается перпендикулярно к направлению колебаний. Это происходит из-за того, что при обтекании пластинки давление по закону Бернулли больше в том месте, где скорость меньше. Силы давления уворюють крутящий момент, который уравновешивается за счет упругости нити. При этом диск устанавливается к направлению потока под углом больше, чем 45 ?. по углу поворота диска определяют силу звука. В постоянном потоке угол поворота диска Рэлея пропорциональна квадрату скорости, при звуковых колебаниях - квадрату амплитуды скорости, и этот угол не зависит от частоты.


3. Неправильное применение закона Бернулли

Подъемная сила самолета обусловлено специфическим строением крыла. До недавнего времени для объяснения причины подъемной силы крыла применяли закон Бернулли. Согласно закону Бернулли, объяснения подъемной силы самолета выглядит так: крыло имеет особое строение - снизу оно имеет прямое, а его верхняя часть закругленная. Это позволяет увеличить площадь верхней части крыла. Согласно закону Бернулли, с увеличением скорости давление уменьшается. А поскольку воздух преодолевает путь под крылом и над крылом за одинаковый промежуток времени, под крылом возникает область с увеличенным давлением, что приводит подъем самолета в воздух. Таким образом возникает подъемная сила.

Однако, согласно современным представлениям, подъемная сила крыла возникает не вследствие закона Бернулли. Движение воздушной массы перед крылом можно считать сплошным, он характеризуется одним показателем скорости. Когда воздушная масса контактирует с крылом, она разбивается на две части, которые, вследствие формы крыла, имеют разные скорости и это обуславливает разное давление. Однако это не может быть причиной подъемной силы, поскольку эти две воздушные массы обтекают соответствии верхнюю и нижнюю части крыла не за одинаковое время, поскольку, в отличие от прежних представлений, эти воздушные потоки не соединяются на конце крыла. Итак, большая длина верхней части крыла не означает большей скорости движения воздуха. Итак, хотя закон Бернулли и можно применить для воздушных масс, которые рассекаются крылом (большая скорость обуславливает меньшее давление), однако он один не объясняет подъемную силу крыла. Для полного объяснения следует применять теорему Жуковского.


Уравнение Бернулли является основным уравнением гидродинамики , устанавливающим связь между средней скоростью потока и гидродинамическим давлением в установившемся движении.

Рассмотрим элементарную струйку в установившемся движении идеальной жидкости. Выделим двумя сечениями, перпендикулярными к направлению вектора скоростиu , элемент длиной dl и площадью dF . Выделенный объем будет находиться под действием силы тяжести

и сил гидродинамического давления
.

Так как
, то
.

Учитывая, что в общем случае скорость выделенного элемента
, его ускорение

.

Применив к выделенному элементу весом
уравнение динамики
в проекции на траекторию его движения, получим

Учитывая то, что
и что при установившемся движении
, после интегрирования и деления на
получим полный напор потока в рассматриваемом сечении:

,

где - геометрический напор (высота), выражающий удельную потенциальную энергию положения частички жидкости над некоторой плоскостью отсчета, м,

- пьезометрический напор, выражающий удельную энергию давления, м,

- скоростной напор, выражающий удельную кинетическую энергию, м,

- статический напор, м.

Это и есть уравнение Бернулли. Трехчлен этого уравнения выражает напор в соответствующем сечении и представляет собой удельную (отнесенную к единице веса) механическую энергию, переносимую элементарной струйкой через это сечение.

Впрактике технических измерений уравнение Бернулли используют для определения скорости жидкости
.

Уравнение Бернулли можно получить еще и следующим образом. Представим себе, что рассматриваемый нами элемент жидкости является неподвижным. Тогда на основании основного уравнения гидростатики
потенциальная энергия жидкости в сечениях 1 и 2 будет

.

Движение жидкости характеризуется появлением кинетической энергии, которая для единицы веса будет равна для рассматриваемых сечений
и
. Полная энергия потока элементарной струйки будет равна сумме потенциальной и кинетической энергии, поэтому

.

Таким образом, основное уравнение гидростатики является следствием уравнения Бернулли.

Лекция №7

Уравнение бернулли для реальной жидкости

Уравнение Бернулли в установившемся движении идеальной жидкости имеет вид:

.

где - геометрический напор (высота), м,- пьезометрический напор, м,

- скоростной напор, м,
- статический напор, м.

В случае реальной жидкости полный напор для разных струек в одном и том же сечении потока не будет одинаковым, так как неодинаковым будет скоростной напор в разных точках одного и того же сечения потока. Кроме того, в виду рассеяния энергии из-за трения напор от сечения к сечению будет убывать.

Однако для сечений потока, взятых там, где движение на его участках плавно меняющееся, для всех проходящих через сечение элементарных струек будет постоянным статический напор

.

Если уравнение Бернулли для элементарной струйки распространить на весь поток и учесть потери напора на сопротивление движению, то получим

где α – коэффициент кинетической энергии, равный для турбулентного потока 1,13, а для ламинарного – 2; v – средняя скорость потока; h – уменьшение удельной механической энергии потока на участке между сечениями 1 и 2, проходящее в результате сил внутреннего трения.

Расчет дополнительного члена h в уравнении Бернулли является основной задачей инженерной гидравлики.

Графическое представление уравнения Бернулли для нескольких сечений потока реальной жидкости имеет вид:

Линия А, которая проходит по уровням в пьезометрах, измеряющих в точках избыточное давление, называетсяпьезометрической линией . Она показывает изменение отсчитанного от плоскости сравнения статического напора Н с по длине потока. Пьезометрическая линия отделяет область измерения потенциальной и кинетической энергии.

Полный напор Н уменьшается по длине потока (линия В – линия полного напора реальной жидкости).

Градиент напора по длине потока называется гидравлическим уклоном и выражается формулой

,

т.е. гидравлический уклон численно равен синусу угла между горизонталью и линией полного напора реальной жидкости.

Расходомер Вентури

Расходомер Вентури представляет собой устройство, устанавливаемое в трубопроводах и осуществляющее сужение потока – дросселирование. Расходомер состоит из двух участков – плавно сужающегося (сопла) и постепенно расширяющегося (диффузора). Скорость потока в суженном месте возрастает, а давление падает. В наибольшем и наименьшем сечениях трубы установлены пьезометры, показания которых позволяют определить перепад пьезометрического напора между двумя сечениями трубы и записать

.

В этом уравнении неизвестными являются v 1 и v 2 . Из уравнения неразрывности следует
, что позволяет определить скоростьv 2 и расход жидкости через трубу

,

где С – константа расходомера, учитывающая также и потери напора, так как определяется опытом.

Аналогично ведется расчет расходомерной шайбы, обычно выполняемой в виде кольца. Расход определяется по замеренной разности уровней в пьезометрах.

Уравнение Бернулли и уравнение неразрывности потока являются основными при расчете гидравлических систем.