20.09.2019

Эллиптический параболоид каноническое уравнение. Параболоиды


Эллиптическим параболоидом

\frac{x^2}{a^2}+\frac{y^2}{b^2}=2\cdot z.

Гиперболическим параболоидом называется поверхность, определяемая в некоторой прямоугольной системе координат Oxyz каноническим уравнением

\frac{x^2}{a^2}-\frac{y^2}{b^2}=2\cdot z.

В уравнениях (4.51) и (4.52) a и b - положительные параметры, характеризующие параболоиды, причем для эллиптического параболоида a\geqslant b .

Начало координат называют вершиной каждого из параболоидов ((4.50) или (4.51)).

Плоские сечения эллиптического параболоида

Плоскость Oxz пересекает эллиптический параболоид (4.51) по линии, имеющей в этой плоскости уравнение \frac{x^2}{a^2}=2z , которое равносильно уравнению x^2=2pz параболы с фокальным параметром p=a^2 . Сечение параболоида плоскостью Oyz получаем, подставляя x=0 в уравнение (4.51): \frac{y^2}{b^2}=2z . Это уравнение равносильно уравнению y^2=2qz параболы с фокальным параметром q=b^2 . Эти сечения называются главными параболами эллиптического параболоида (4.51).

Рассмотрим теперь сечение эллиптического параболоида плоскостями, параллельными плоскости Oxy . Подставляя z=h , где h - произвольная постоянная (параметр), в уравнение (4.51), получаем

\frac{x^2}{a^2}+\frac{y^2}{b^2}=2\cdot h.

При h<0 уравнение не имеет действительных решений, т.е. плоскость z=h при h<0 не пересекает параболоид (4.51). При h=0 уравнению (4.51) удовлетворяет одна вещественная точка O - вершина параболоида. При h>0 уравнение определяет эллипс \frac{x^2}{(a")^2}+\frac{y^2}{(b")^2}=1 с полуосями a"=a\sqrt{2h}, b"=b\sqrt{2h} . Следовательно, сечение эллиптического параболоида плоскостью z=h (при h>0 ) представляет собой эллипс, центр которого лежит на оси аппликат, а вершины - на главных параболах.

Таким образом, эллиптический параболоид можно представить как поверхность, образованную эллипсами, вершины которых лежат на главных параболах (рис.4.46,а).

Параболоид вращения

Эллиптический параболоид, у которого a=b , называется параболоидом вращения . Такой параболоид является поверхностью вращения. Сечения параболоида вращения плоскостями z=h (при h>0 ), представляют собой окружности с центрами на оси аппликат (рис.4.46,б). Его можно получить, вращая вокруг оси Oz параболу y^2=2qz , где q=a^2=b^2 .

Плоские сечения гиперболического параболоида

Сечения гиперболического параболоида координатными плоскостями Oxz и Oyz представляют собой параболы (главные параболы) x^2=2pz или y^2=-2qz с параметрами p=a^2 или q=b^2 соответственно. Поскольку оси симметрии главных парабол направлены в противоположные стороны, гиперболический параболоид называют седловой поверхностью .

Рассмотрим теперь сечения гиперболического параболоида плоскостями, параллельными плоскости Oxy . Подставляя z=h , где h - произвольная постоянная (параметр), в уравнение (4.52), получаем \frac{x^2}{a^2}-\frac{y^2}{b^2}=2h При h>0 уравнение равносильно уравнению гиперболы \frac{x^2}{(a")^2}-\frac{y^2}{(b")^2}=1 полуосями a"=a\sqrt{2h}, b"=b\sqrt{2h} , то есть сечение гиперболического параболоида плоскостью z=h при h>0 представляет собой гиперболу с центром на оси аппликат, вершины которой лежат на главной параболе x^2=2pz . При h<0 получаем уравнение сопряженной гиперболы -\frac{x^2}{(a")^2}+\frac{y^2}{(b")^2}=1 с полуосями a"=a\sqrt{-2h}, b"=b\sqrt{-2h} , т.е. сечение гиперболического параболоида плоскостью z=h при h<0 представляет собой сопряженную гиперболу с центром на оси аппликат, вершины которой лежат на главной параболе y^2=-2qh . При h=0 получаем уравнение пересекающихся прямых \frac{x^2}{a^2}-\frac{y^2}{b^2}=0 , т.е. сечение гиперболического параболоида плоскостью z=0 представляет собой пару пересекающихся в начале координат прямых.

Таким образом, гиперболический параболоид можно представить как поверхность, образованную гиперболами (включая и "крест" из их асимптот), вершины которых лежат на главных параболах (рис.4.47,а).

Сечение параболоида плоскостью x=h , где h - произвольная постоянная, представляет собой параболу

\frac{h^2}{a^2}-\frac{y^2}{b^2}=2\cdot z \quad \Leftrightarrow \quad y^2=-2\cdot q\cdot\!\left(z-\frac{h^2}{2\cdot a^2}\right)\!.


равную главной параболе y^2=-2qz с параметром q=b^2 , вершина которой лежит на другой главной параболе x^2=2pz с параметром p=a^2 . Поэтому гиперболический параболоид можно представить как поверхность, получающуюся при перемещении одной главной параболы так, чтобы ее вершина "скользила" по другой главной параболе (рис.4.47,б).

Замечания 4.11.

1. Гиперболический параболоид является линейчатой поверхностью, т.е. поверхностью, образованной движением прямой (рис.4.47,в).

2. Ось аппликат канонической системы координат является осью симметрии параболоида, а координатные плоскости Oyz,~Oxz - плоскостями симметрии параболоида.

В самом деле, если точка M(x,y,z) принадлежит параболоиду (эллиптическому или гиперболическому), то точки с координатами (\pm x,\pm y,\pm z) при любом выборе знаков также принадлежат параболоиду, поскольку их координаты удовлетворяют уравнению (4.51) или (4.52) соответственно. Поэтому параболоид симметричен относительно координатных плоскостей Oyz, Oxz и координатной оси Oz .

В вашем браузере отключен Javascript.
Чтобы произвести расчеты, необходимо разрешить элементы ActiveX!

К поверхностям 2-го порядка относится также гиперболический параболоид. Эта поверхность не может быть получена применением алгоритма использующего вращение некоторой линии относительно неподвижной оси.

Для построения гиперболического параболоида используется специальная модель. Эта модель включает в себя две параболы, располагающиеся в двух взаимно перпендикулярных плоскостях.

Пусть парабола I располагается в плоскости и неподвижна. Парабола II совершает сложное движение:

▫ её начальное положение совпадает с плоскостью
, причём вершина параболы совпадает с началом координат: =(0,0,0);

▫ далее эта парабола совершает движение параллельный перенос, причём её вершина
совершает траекторию, совпадающую с параболой I;

▫ рассматривается два различных начальных положения параболы II: один – ветви параболы вверх, второй – ветви вниз.

Запишем уравнения: для первой параболы I:
– неизменно; для второй параболы II:
– начальное положение, уравнение движения:
Нетрудно видеть, что точка
имеет координаты:
. Так как необходимо отобразить закон движения точки
: эта точка принадлежит параболе I, то должны постоянно выполняться соотношения: =
и
.

Из геометрических особенностей модели легко видеть, что подвижная парабола заметает некоторую поверхность. В таком случае уравнение поверхности, описываемой параболой II, имеет вид:

или→
. (1)

Форма получаемой поверхности зависит от распределения знаков параметров
. Возможны два случая:

1). Знаки величин p и q совпадают: параболы I и II располагаются по одну сторону от плоскости OXY . Примем: p = a 2 и q = b 2 . Тогда получаем уравнение известной поверхности:

эллиптический параболоид . (2)

2). Знаки величин p и q различны: параболы I и II располагаются по разные стороны от плоскости OXY . Пусть p = a 2 и q = - b 2 . Теперь получаем уравнение поверхности:

гиперболический параболоид . (3)

Представить геометрическую форму поверхности, определяемой уравнением (3) нетрудно, если вспомнить кинематическую модель взаимодействия двух парабол, участвующих в движении.

На рисунке красным цветом условно показана парабола I. Показана только окрестность поверхности у начала координат. Из-за того, что форма поверхности выразительно намекает на кавалерийское седло, окрестность эту часто называют – седло .

В физике, при исследованиях устойчивости процессов, вводят типы равновесия: устойчивое – лунка, выпуклостью вниз, неустойчивое – выпуклая вверх поверхность и промежуточное – седло. Равновесие третьего типа также относят к типу неустойчивого равновесия, причём только на красной линии (парабола I) возможно равновесие.

§ 4. Цилиндрические поверхности.

При рассмотрении поверхностей вращения мы определили простейший цилиндрическую поверхность – цилиндр вращения, то есть круговой цилиндр.

В элементарной геометрии цилиндр определён по аналогии с общим определением призмы. Оно достаточно сложное:

▫ пусть имеем в пространстве плоский многоугольник
– обозначим как , и с ним совпадает многоугольник
– обозначим как
;

▫ применим к многоугольнику
движение параллельный перенос: точки
перемещаются по траекториям, параллельным заданному направлению ;

▫ если остановить перенос многоугольника
, то его плоскость
параллельна плоскости ;

▫ поверхностью призмы называют: совокупность многоугольников ,
основания призмы, а также параллелограммов
,
,... – боковая поверхность призмы.

Воспользуемся элементарным определением призмы для построения более общего определения призмы и её поверхности, а именно, будем различать:

▫ неограниченная призма – это многогранное тело, ограниченное рёбрами ,,... и плоскостями между этими рёбрами;

▫ ограниченная призма – это многогранное тело, ограниченное рёбрами ,,... и параллелограммами
,
,...; боковая поверхность этой призмы – совокупность параллелограммов
,
,...; основания призмы – совокупность многоугольников ,
.

Пусть имеем неограниченную призму: ,,... Пересечём эту призму произвольной плоскостью . Пересечём эту же призму другой плоскостью
. В сечении получим многоугольник
. В общем случае считаем, что плоскость
не параллельна плоскости . Это значит, призма построена не параллельным переносом многоугольника .

Предложенное построение призмы включает не только прямые и наклонные призмы, но и любые усечённые.

В аналитической геометрии цилиндрические поверхности будем понимать настолько обобщённо, что неограниченный цилиндр включает неограниченную призму как частный случай: стоит лишь предположить, что многоугольник можно заменять произвольной линией, не обязательно замкнутой – направляющая цилиндра. Направление называют образующей цилиндра.

Из всего сказанного следует: для определения цилиндрической поверхности необходимо задать линию-направляющую и направление образующей.

Цилиндрические поверхности получают на основе плоских кривых 2-го порядка, служащих направляющими для образующих .

На начальном этапе изучения цилиндрических поверхностей примем упрощающие допущения:

▫ пусть направляющая цилиндрической поверхности всегда располагается в одной из координатных плоскостей;

▫ направление образующей совпадает с одной из осей координат, то есть перпендикулярна плоскости, в которой определена направляющая.

Принятые ограничения не приводят к потере общности, так как остаётся возможность за счёт выбора сечений плоскостями и
строить произвольные геометрические фигуры: прямые, наклонные, усечённые цилиндры.

Эллиптический цилиндр .

Пусть в качестве направляющей цилиндра взяли эллипс :
, расположенный в координатной плоскости

: эллиптический цилиндр.

Гиперболический цилиндр .

:

, а направление образующей определяет ось
. В этом случае уравнение цилиндра – это сама линия : гиперболический цилиндр.

Параболический цилиндр .

Пусть в качестве направляющей цилиндра взяли гиперболу :
, расположенную в координатной плоскости
, а направление образующей определяет ось
. В этом случае уравнение цилиндра – это сама линия : параболический цилиндр.

Замечание : учитывая общие правила построения уравнений цилиндрических поверхностей, а также представленные частные примеры эллиптического, гиперболического и параболического цилиндров, отметим: построение цилиндра для любой другой образующей, для принятых упрощающих условий, не должно вызвать никаких затруднений!

Рассмотрим теперь более общие условия построения уравнений цилиндрических поверхностей:

▫ направляющая цилиндрической поверхности располагается в произвольной плоскости пространства
;

▫ направление образующей в принятой системе координат произвольно.

Принятые условия изобразим на рисунке.

▫ направляющая цилиндрической поверхности располагается в произвольной плоскости пространства
;

▫ система координат
получена из системы координат
параллельным переносом;

▫ расположение направляющей в плоскости наиболее предпочтительное: для кривой 2-го порядка будем считать, что начало координат совпадает с центром симметрии рассматриваемой кривой;

▫ направление образующей произвольное (может быть задано любым из способов: вектором, прямой и др.).

В дальнейшем будем считать, что системы координат
и
совпадают. Это означает, что 1-й шаг общего алгоритма построения цилиндрических поверхностей, отражающий параллельный перенос:

, предварительно выполнен.

Напомним, как учитывается параллельный перенос в общем случае, рассмотрев простой пример.

Пример 6 13 : В системе координат
в виде:
=0. Записать уравнение этой направляющей в системе
.

Решение :

1). Обозначим произвольную точку
: в системе
как
, и в системе
как
.

2). Запишем векторное равенство:
=
+
. В координатной форме это можно записать в виде:
=
+
. Или в виде:
=

, или:
=.

3). Запишем уравнение направляющей цилиндра в системе координат
:

Ответ: преобразованное уравнение направляющей: =0.

Итак, будем считать, что центр кривой, представляющей направляющую цилиндра, всегда располагается в начале координат системы
в плоскости .

Рис. В . Базовый рисунок при построении цилиндра.

Сделаем ещё одно допущение, упрощающее заключительные шаги построения цилиндрической поверхности. Так как применением вращения системы координат нетрудно совместить направление оси
системы координат
с нормалью плоскости , а направления осей
и
с осями симметрии направляющей , то будем считать, что в качестве исходного положения направляющей имеем кривую, расположенную в плоскости
, причём одна её ось симметрии совпадает с осью
, а вторая с осью
.

Замечание : так как выполнение операций параллельный перенос и вращение вокруг неподвижной оси операции достаточно простые, то принятые допущения не сужают применимость разрабатываемого алгоритма построения цилиндрической поверхности в самом общем случае!

Мы видели, что при построении цилиндрической поверхности в случае, когда направляющая располагается в плоскости
, а образующая параллельна оси
, достаточно определить только направляющую .

Так как цилиндрическая поверхность может быть однозначно определена заданием любой линии, получаемой в сечении этой поверхности произвольной плоскостью, то примем такой общий алгоритм решения задачи:

1 . Пусть направление образующей цилиндрической поверхности задано вектором . Спроектируем направляющую , заданную уравнением:
=0, на плоскость, перпендикулярную направлению образующей , то есть на плоскость
. В результате цилиндрическая поверхность будет задана в системе координат
уравнением:
=0.

2
вокруг оси
на угол
: смысл угла
совместится с системой
, а уравнение конической поверхности преобразуется в уравнение:
=0.

3 . Применим вращение системы координат
вокруг оси
на угол
: смысл угла вполне понятен из рисунка. В результате вращения система координат
совместится с системой
, а уравнение конической поверхности преобразуется в
=0. Это и есть уравнение цилиндрической поверхности, у которой были заданы направляющая и образующая в системе координат
.

Представленный ниже пример иллюстрирует реализацию записанного алгоритма и вычислительные трудности подобных задач.

Пример 6 14 : В системе координат
задано уравнение направляющей цилиндра в виде:
=9. Составить уравнение цилиндра, образующие которого параллельны вектору =(2,–3,4).

Р
ешение
:

1). Спроектируем направляющую цилиндра на плоскость, перпендикулярную . Известно, что такое преобразование заданную окружность превращает в эллипс, осями которого будут: большая =9, а малая =
.

Этот рисунок иллюстрирует проектирование окружности, заданной в плоскости
на координатную плоскость
.

2). Результатом проектирования окружности является эллипс:
=1, или
. В нашем случае это:
, где
==.

3
). Итак, уравнение цилиндрической поверхности в системе координат
получено. Так как по условию задачи мы должны иметь уравнение этого цилиндра в системе координат
, то остаётся применить преобразование координат, переводящее систему координат
в систему координат
, заодно и уравнение цилиндра:
в уравнение, выраженное через переменные
.

4). Воспользуемся базовым рисунком, и запишем все необходимые для решения задачи тригонометрические значения:

==,
==,
==.

5). Запишем формулы преобразования координат при переходе от системы
к системе
:
(В)

6). Запишем формулы преобразования координат при переходе от системы
к системе
:
(С)

7). Подставляя переменные
из системы (В) в систему (С), а также учитывая значения используемых тригонометрических функций, запишем:

=
=
.

=
=
.

8). Остаётся подставить найденные значения и в уравнение направляющей цилиндра :
в системе координат
. Выполнив аккуратно все алгебраические преобразования, получаем уравнение конической поверхности в системе координат
: =0.

Ответ: уравнение конуса: =0.

Пример 6 15 : В системе координат
задано уравнение направляющей цилиндра в виде:
=9, =1. Составить уравнение цилиндра, образующие которого параллельны вектору =(2,–3,4).

Решение :

1). Нетрудно заметить, этот пример отличается от предыдущего только тем, что направляющую параллельно перенесли на 1 вверх.

2). Это значит, что в соотношениях (В) следует принять: =–1. Учитывая выражения системы (С), скорректируем запись для переменной :

=
.

3). Изменение легко учитывается коррекцией конечной записи уравнения для цилиндра из предыдущего примера:

Ответ: уравнение конуса: =0.

Замечание : нетрудно заметить, что основная трудность при многократных преобразованиях систем координат в задачах с цилиндрическими поверхностями – этоаккуратность ивыносливость в алгебраических марафонах: да здравствует система образования, принятая в нашей многострадальной стране!

Эллипсоидом называется поверхность, уравнение которой в некоторой прямоугольной декартовой системе координат Oxyz имеет вид где а ^ b ^ с > 0. Для того, чтобы выяснить, как выглядит эллипсоид, поступим следующим образом. Возьмем на плоскости Oxz эллипс и будем вращать его вокруг оси Oz (рис. 46). Рис.46 Полученная поверхность Эллипсоид. Гиперболоиды. Параболоиды. Цилиндры и конус второго порядка. - эллипсоид вращения - уже дает представление о том, как устроен эллипсоид общего вида. Чтобы получитьего уравнение, достаточ но равномсрносжать эллипсоид вращения.вдоль оси Оу с коэффициентом J ^ !,т.с. заменить в его уравнении у на Jt/5). 10.2. Гиперболоиды Вращая гиперболу fl i! = а2 с2 1 вокруг оси Oz (рис. 47), получим поверхность, называемую однополостным гиперболоидом вращения. Его уравнение имеет вид *2 + у; получается тем же способом, что и в случае эллипсоида вращения. 5) Эллипсоид врашения можно получить равномерным сжатием сферы +yJ + *J = л" вдоль оси Oz с коэффициентом ~ ^ 1. Путем равномерного сжатия этой поверхности вдоль оси Оу с коэффициентом 2 ^ 1 получим однополостный гиперболоид общего вида. Его уравнение Эллипсоид. Гиперболоиды. Параболоиды. Цилиндры и конус второго порядка. получается тем же способом, что и в разобранном выше случае эллипсоида. Путем вращения вокруг оси Ог сопряженной гиперболы получим двуполостный гиперболоид вращения (рис. 48). Его уравнение а2 С2 Путем равномерного сжатия этой поверхности вдоль оси Оу с коэффициентом 2 ^ 1 приходим к двуполостному гиперболоиду общего вида. Заменой у на -у получаем его уравнение Врашая параболу вокруг оси Oz (рис.49), получаем параболоид вращения. Его уравнение имеет вид х2 + у2 = 2 pz. Путем сжатия параболоида врашения вдоль оси Оу с коэффициентом yj* ^ 1 получаем эллиптический параболоид. Его уравнение получается из уравнения параболоида врашения путем замены Если, то получаем параболоид вида, указанного на рис. 50. 10.4. Гиперболический параболоид Гиперболическим параболоидом называется поверхность, уравнение которой в некоторой прямоугольной декартовой системе координат Oxyz имеет вид где р > 0, q > 0. Вид этой поверхности определим, применив так называемый метод сечений, который заключается в следующем: параллельно координатным плоскостям проводятся плоскости, пересекающие исследуемую поверхность, и по изменению конфигурации возникающих в результате плоских кривых делается вывод о структуре самой поверхности. Начнем с сечений плоскостями z = h = const, параллельными координатной плоскости Оху. При h > 0 получаем гиперболы при h - сопряженные гиперболы а при - пару псрссскаюшихся прямых Заметим, что эти прямые являются асимптотами для всех гипербол (т. е. при любом h Ф 0). Спроектируем получаемые кривые на плоскость Оху. Получим следующую картину (рис. 51). Уже это рассмотрение позволяет сделать заключение о седлообразном строении рассматриваемой поверхности (рис. 52). Рис.51 Рис.52 Рассмотрим теперь сечения плоскостями Заменяя в уравнении поверхности у на Л, получаем уравнения парабол (рис.53). Аналогичная картина возникает при рассечении заданной поверхности плоскостями В этом случае также получаются параболы ветви которых направлены вниз (а не вверх, как для сечения плоскостями у = h) (рис. 54). Замечание. Методом сечений можно разобраться в строении и всех ранее рассмотренных поверхностей второго порядка. Однако путем вращения кривых второго порядка н последующего равномерного сжатия к пониманию их структуры можно прийти проще и значительно быстрее. Оставшиеся поверхности второго порядка по существу уже рассмотрены ранее. Это цилиндры: эллиптинескии гиперболический Рис. 56 и параболический и конус второго порядка представление о котором можно получить либо путем вращения пары пересекающихся прямых вокруг оси Oz и последующего сжатия, либо методом сечений. Конечно, в обоих случаях получим, что исследуемая поверхность имеет вид, указанный на рис. 59. а) вычислите координаты фокусов; , . б) вычислите эксцентриситет; . в) напишите уравнения асимптот и директрис; г) напишите уравнение сопряженной гиперболы и вычислите ее эксцентриситет. 2. Составьте каноническое уравнение параболы, если расстояние от фокуса до вершины равно 3. 3. Напишите уравнение касательной к эллипсу ^ + = 1 вето точке М(4, 3). 4. Определите вид и расположение кривой, заданной уравнением: Ответы эллипс, большая ось параллельна Эллипсоид. Гиперболоиды. Параболоиды. Цилиндры и конус второго порядка. оси Ох; б) гипербола центр О (-1,2), угловой коэффициент вешественной оси Х равен 3; в) парабола У2 = , вершина (3, 2), вектор оси, направленный в сторону вогнутости параболы, равен {-2, -1}; г) гипербола с центром, асимптоты параллельны осям координат; д) пара пересекающихся прямых е) пара параллельных прямых

Эллиптический параболоид

Эллиптический параболоид при a=b=1

Эллипти́ческий параболо́ид - поверхность, описываемая функцией вида

,

где a и b одного знака. Поверхность описывается семейством параллельных парабол с ветвями, направленными вверх, вершины которых описывают параболу, с ветвями, также направленными вверх.

Если a = b то эллиптический параболоид представляет собой поверхность вращения , образованную вращением параболы вокруг вертикальной оси, проходящей через вершину данной параболы.

Гиперболический параболоид

Гиперболический параболоид при a=b=1

Гиперболи́ческий параболо́ид (называемый в строительстве «гипар») - седлообразная поверхность, описываемая в прямоугольной системе координат уравнением вида

.

Из второго представления видно, что гиперболический параболоид является линейчатой поверхностью .

Поверхность может быть образована движением параболы, ветви которой направлены вниз, по параболе, ветви которой направлены вверх, при условии, что первая парабола соприкасается со второй своей вершиной.

Параболоиды в мире

В технике

В искусстве

В литературе

Устройство, описанное в Гиперболоид инженера Гарина должно было быть параболоидом .


Wikimedia Foundation . 2010 .

  • Элон Менахем
  • Элтанг

Смотреть что такое "Эллиптический параболоид" в других словарях:

    ЭЛЛИПТИЧЕСКИЙ ПАРАБОЛОИД Большой Энциклопедический словарь

    эллиптический параболоид - один из двух типов параболоидов. * * * ЭЛЛИПТИЧЕСКИЙ ПАРАБОЛОИД ЭЛЛИПТИЧЕСКИЙ ПАРАБОЛОИД, один из двух типов параболоидов (см. ПАРАБОЛОИДЫ) … Энциклопедический словарь

    Эллиптический параболоид - один из двух видов параболоидов (См. Параболоиды) … Большая советская энциклопедия

    ЭЛЛИПТИЧЕСКИЙ ПАРАБОЛОИД - незамкнутая поверхность второго порядка. Канонич. уравнение Э. п. имеет вид Э. п. расположен по одну сторону от плоскости Оху (см. рис.). Сечения Э. п. плоскостями, параллельными плоскости Оху, являются эллипсами с равным эксцентриситетом (если р … Математическая энциклопедия

    ЭЛЛИПТИЧЕСКИЙ ПАРАБОЛОИД - один из двух типов параболоидов … Естествознание. Энциклопедический словарь

    ПАРАБОЛОИД - (греч., от parabole парабола, и eidos сходство). Тело, образуемое вращающеюся параболой. Словарь иностранных слов, вошедших в состав русского языка. Чудинов А.Н., 1910. ПАРАБОЛОИД геометрическое тело, образовавшееся от вращения параболы, так… … Словарь иностранных слов русского языка

    ПАРАБОЛОИД - ПАРАБОЛОИД, параболоида, муж. (см. парабола) (мат.). Поверхность второго порядка, не имеющая центра. Параболоид вращения (образуется вращением параболы вокруг ее оси). Эллиптический параболоид. Гиперболический параболоид. Толковый словарь Ушакова … Толковый словарь Ушакова

    ПАРАБОЛОИД - ПАРАБОЛОИД, поверхность, получаемая при движении параболы, вершина которой скользит по другой, неподвижной параболе (с осью симметрии, параллельной оси движущейся параболы), тогда как ее плоскость, смещаясь параллельно самой себе, остается… … Современная энциклопедия

    Параболоид - ― тип поверхности второго порядка. Параболоид может быть охарактеризован как незамкнутая нецентральная (то есть не имеющая центра симметрии) поверхность второго порядка. Канонические уравнения параболоида в декартовых координатах: если и одного… … Википедия

    ПАРАБОЛОИД - незамкнутая нецентральная поверхность второго порядка. Канонич. уравнения П.: эллиптический параболоид (при р = q называется П. вращения) и гиперболический параболоид. А. Б. Иванов … Математическая энциклопедия

С тем отличием, что вместо «плоских» графиков мы рассмотрим наиболее распространенные пространственные поверхности, а также научимся грамотно их строить от руки. Я довольно долго подбирал программные средства для построения трёхмерных чертежей и нашёл пару неплохих приложений, но, несмотря на всё удобство использования, эти программы плохо решают важный практический вопрос. Дело в том, что в обозримом историческом будущем студенты по-прежнему будут вооружены линейкой с карандашом, и, даже располагая качественным «машинным» чертежом, многие не смогут корректно перенести его на клетчатую бумагу. Поэтому в методичке особое внимание уделено технике ручного построения, и значительная часть иллюстраций страницы представляет собой handmade-продукт.

Чем отличается этот справочный материал от аналогов?

Обладая приличным практическим опытом, я очень хорошо знаю, с какими поверхностями чаще всего приходится иметь дело в реальных задачах высшей математики, и надеюсь, что эта статья поможет вам в кратчайшие сроки пополнить свой багаж соответствующими знаниями и прикладными навыками, которых в 90-95% случаев должно хватить.

Что нужно уметь на данный момент?

Самое элементарное:

Во-первых, необходимо уметь правильно строить пространственную декартову систему координат (см. начало статьи Графики и свойства функций ) .

Что вы приобретёте после прочтения этой статьи?

Бутылку После освоения материалов урока вы научитесь быстро определять тип поверхности по её функции и/или уравнению, представлять, как она расположена в пространстве, и, конечно же, выполнять чертежи. Ничего страшного, если не всё уложится в голове с 1-го прочтения – к любому параграфу по мере надобности всегда можно вернуться позже.

Информация по силам каждому – для её освоения не нужно каких-то сверхзнаний, особого художественного таланта и пространственного зрения.

Начинаем!

На практике пространственная поверхность обычно задаётся функцией двух переменных или уравнением вида (константа правой части чаще всего равна нулю либо единице) . Первое обозначение больше характерно для математического анализа, второе – для аналитической геометрии . Уравнение , по существу, является неявно заданной функцией 2 переменных, которую в типовых случаях легко привести к виду . Напоминаю простейший пример c :

уравнение плоскости вида .

– функция плоскости в явном виде .

Давайте с неё и начнём:

Распространенные уравнения плоскостей

Типовые варианты расположения плоскостей в прямоугольной системе координат детально рассмотрены в самом начале статьи Уравнение плоскости . Тем не менее, ещё раз остановимся на уравнениях, которые имеют огромное значение для практики.

Прежде всего, вы должны на полном автомате узнавать уравнения плоскостей, которые параллельны координатным плоскостям . Фрагменты плоскостей стандартно изображают прямоугольниками, которые в последних двух случаях выглядят, как параллелограммы. По умолчанию размеры можно выбрать любые (в разумных пределах, конечно), при этом желательно, чтобы точка, в которой координатная ось «протыкает» плоскость являлась центром симметрии:


Строго говоря, координатные оси местами следовало изобразить пунктиром, но во избежание путаницы будем пренебрегать данным нюансом.

(левый чертёж) неравенство задаёт дальнее от нас полупространство, исключая саму плоскость ;

(средний чертёж) неравенство задаёт правое полупространство, включая плоскость ;

(правый чертёж) двойное неравенство задаёт «слой», расположенный между плоскостями , включая обе плоскости.

Для самостоятельной разминки:

Пример 1

Изобразить тело, ограниченное плоскостями
Составить систему неравенств, определяющих данное тело.

Из-под грифеля вашего карандаша должен выйти старый знакомый прямоугольный параллелепипед . Не забывайте, что невидимые рёбра и грани нужно прочертить пунктиром. Готовый чертёж в конце урока.

Пожалуйста, НЕ ПРЕНЕБРЕГАЙТЕ учебными задачами, даже если они кажутся слишком простыми. А то может статься, раз пропустили, два пропустили, а затем потратили битый час, вымучивая трёхмерный чертёж в каком-нибудь реальном примере. Кроме того, механическая работа поможет гораздо эффективнее усвоить материал и развить интеллект! Не случайно в детском саду и начальной школе детей загружают рисованием, лепкой, конструкторами и другими заданиями на мелкую моторику пальцев. Простите за отступление, не пропадать же двум моим тетрадям по возрастной психологии =)

Следующую группу плоскостей условно назовём «прямыми пропорциональностями» – это плоскости, проходящие через координатные оси:

2) уравнение вида задаёт плоскость, проходящую через ось ;

3) уравнение вида задаёт плоскость, проходящую через ось .

Хотя формальный признак очевиден (какая переменная отсутствует в уравнении – через ту ось и проходит плоскость) , всегда полезно понимать суть происходящих событий:

Пример 2

Построить плоскость

Как лучше осуществить построение? Предлагаю следующий алгоритм:

Сначала перепишем уравнение в виде , из которого хорошо видно, что «игрек» может принимать любые значения. Зафиксируем значение , то есть, будем рассматривать координатную плоскость . Уравнения задают пространственную прямую , лежащую в данной координатной плоскости. Изобразим эту линию на чертеже. Прямая проходит через начало координат, поэтому для её построения достаточно найти одну точку. Пусть . Откладываем точку и проводим прямую.

Теперь возвращаемся к уравнению плоскости . Поскольку «игрек» принимает любые значения, то построенная в плоскости прямая непрерывно «тиражируется» влево и вправо. Именно так и образуется наша плоскость , проходящая через ось . Чтобы завершить чертёж, слева и справа от прямой откладываем две параллельные линии и поперечными горизонтальными отрезками «замыкаем» символический параллелограмм:

Так как условие не накладывало дополнительных ограничений, то фрагмент плоскости можно было изобразить чуть меньших или чуть бОльших размеров.

Ещё раз повторим смысл пространственного линейного неравенства на примере . Как определить полупространство, которое оно задаёт? Берём какую-нибудь точку, не принадлежащую плоскости , например, точку из ближнего к нам полупространства и подставляем её координаты в неравенство:

Получено верное неравенство , значит, неравенство задаёт нижнее (относительно плоскости ) полупространство, при этом сама плоскость не входит в решение.

Пример 3

Построить плоскости
а) ;
б) .

Это задания для самостоятельного построения, в случае затруднений используйте аналогичные рассуждения. Краткие указания и чертежи в конце урока.

На практике особенно распространены плоскости, параллельные оси . Частный случай, когда плоскость проходит через ось, только что был в пункте «бэ», и сейчас мы разберём более общую задачу:

Пример 4

Построить плоскость

Решение : в уравнение в явном виде не участвует переменная «зет», а значит, плоскость параллельна оси аппликат. Применим ту же технику, что и в предыдущих примерах.

Перепишем уравнение плоскости в виде из которого понятно, что «зет» может принимать любые значения. Зафиксируем и в «родной» плоскости начертим обычную «плоскую» прямую . Для её построения удобно взять опорные точки .

Поскольку «зет» принимает все значения, то построенная прямая непрерывно «размножается» вверх и вниз, образуя тем самым искомую плоскость . Аккуратно оформляем параллелограмм разумной величины:

Готово.

Уравнение плоскости в отрезках

Важнейшая прикладная разновидность. Если все коэффициенты общего уравнения плоскости отличны от нуля , то оно представимо в виде , который называется уравнением плоскости в отрезках . Очевидно, что плоскость пересекает координатные оси в точках , и большое преимущество такого уравнения состоит в лёгкости построения чертежа:

Пример 5

Построить плоскость

Решение : сначала составим уравнение плоскости в отрезках. Перебросим свободный член направо и разделим обе части на 12:

Нет, здесь не опечатка и все дела происходят именно в пространстве! Исследуем предложенную поверхность тем же методом, что недавно использовали для плоскостей. Перепишем уравнение в виде , из которого следует, что «зет» принимает любые значения. Зафиксируем и построим в плоскости эллипс . Так как «зет» принимает все значения, то построенный эллипс непрерывно «тиражируется» вверх и вниз. Легко понять, что поверхность бесконечна :

Данная поверхность называется эллиптическим цилиндром . Эллипс (на любой высоте) называется направляющей цилиндра, а параллельные прямые, проходящие через каждую точку эллипса называются образующими цилиндра (которые в прямом смысле слова его и образуют). Ось является осью симметрии поверхности (но не её частью!).

Координаты любой точки, принадлежащей данной поверхности, обязательно удовлетворяют уравнению .

Пространственное неравенство задаёт «внутренность» бесконечной «трубы», включая саму цилиндрическую поверхность, и, соответственно, противоположное неравенство определяет множество точек вне цилиндра.

В практических задачах наиболее популярен частный случай, когда направляющей цилиндра является окружность :

Пример 8

Построить поверхность, заданную уравнением

Бесконечную «трубу» изобразить невозможно, поэтому художества ограничиваются, как правило, «обрезком».

Сначала удобно построить окружность радиуса в плоскости , а затем ещё пару окружностей сверху и снизу. Полученные окружности (направляющие цилиндра) аккуратно соединяем четырьмя параллельными прямыми (образующими цилиндра):

Не забываем использовать пунктир для невидимых нам линий.

Координаты любой точки, принадлежащей данному цилиндру, удовлетворяют уравнению . Координаты любой точки, лежащей строго внутри «трубы», удовлетворяют неравенству , а неравенство задаёт множество точек внешней части. Для лучшего понимания рекомендую рассмотреть несколько конкретных точек пространства и убедиться в этом самостоятельно.

Пример 9

Построить поверхность и найти её проекцию на плоскость

Перепишем уравнение в виде из которого следует, что «икс» принимает любые значения. Зафиксируем и в плоскости изобразим окружность – с центром в начале координат, единичного радиуса. Так как «икс» непрерывно принимает все значения, то построенная окружность порождает круговой цилиндр с осью симметрии . Рисуем ещё одну окружность (направляющую цилиндра) и аккуратно соединяем их прямыми (образующими цилиндра). Местами получились накладки, но что делать, такой уж наклон:

На этот раз я ограничился кусочком цилиндра на промежутке и это не случайно. На практике зачастую и требуется изобразить лишь небольшой фрагмент поверхности.

Тут, к слову, получилось 6 образующих – две дополнительные прямые «закрывают» поверхность с левого верхнего и правого нижнего углов.

Теперь разбираемся с проекцией цилиндра на плоскость . Многие читатели понимают, что такое проекция, но, тем не менее, проведём очередную физкульт-пятиминутку. Пожалуйста, встаньте и склоните голову над чертежом так, чтобы остриё оси смотрело перпендикулярно вам в лоб. То, чем с этого ракурса кажется цилиндр – и есть его проекция на плоскость . А кажется он бесконечной полосой, заключенным между прямыми , включая сами прямые. Данная проекция – это в точности область определения функций (верхний «жёлоб» цилиндра), (нижний «жёлоб»).

Давайте, кстати, проясним ситуацию и с проекциями на другие координатные плоскости. Пусть лучи солнца светят на цилиндр со стороны острия и вдоль оси . Тенью (проекцией) цилиндра на плоскость является аналогичная бесконечная полоса – часть плоскости , ограниченная прямыми ( – любое), включая сами прямые.

А вот проекция на плоскость несколько иная. Если смотреть на цилиндр из острия оси , то он спроецируется в окружность единичного радиуса , с которой мы начинали построение.

Пример 10

Построить поверхность и найти её проекции на координатные плоскости

Это задача для самостоятельного решения. Если условие не очень понятно, возведите обе части в квадрат и проанализируйте результат; выясните, какую именно часть цилиндра задаёт функция . Используйте методику построения, неоднократно применявшуюся выше. Краткое решение, чертёж и комментарии в конце урока.

Эллиптические и другие цилиндрические поверхности могут быть смещены относительно координатных осей, например:

(по знакомым мотивам статьи о линиях 2-го порядка ) – цилиндр единичного радиуса с линией симметрии, проходящей через точку параллельно оси . Однако на практике подобные цилиндры попадаются довольно редко, и совсем уж невероятно встретить «косую» относительно координатных осей цилиндрическую поверхность.

Параболические цилиндры

Как следует из названия, направляющей такого цилиндра является парабола .

Пример 11

Построить поверхность и найти её проекции на координатные плоскости.

Не мог удержаться от этого примера =)

Решение : идём проторенной тропой. Перепишем уравнение в виде , из которого следует, что «зет» может принимать любые значения. Зафиксируем и построим обычную параболу на плоскости , предварительно отметив тривиальные опорные точки . Поскольку «зет» принимает все значения, то построенная парабола непрерывно «тиражируется» вверх и вниз до бесконечности. Откладываем такую же параболу, скажем, на высоте (в плоскости) и аккуратно соединяем их параллельными прямыми (образующими цилиндра ):

Напоминаю полезный технический приём : если изначально нет уверенности в качестве чертежа, то линии сначала лучше прочертить тонко-тонко карандашом. Затем оцениваем качество эскиза, выясняем участки, где поверхность скрыта от наших глаз, и только потом придаём нажим грифелю.

Проекции.

1) Проекцией цилиндра на плоскость является парабола . Следует отметить, что в данном случае нельзя рассуждать об области определения функции двух переменных – по той причине, что уравнение цилиндра не приводимо к функциональному виду .

2) Проекция цилиндра на плоскость представляет собой полуплоскость , включая ось

3) И, наконец, проекцией цилиндра на плоскость является вся плоскость .

Пример 12

Построить параболические цилиндры:

а) , ограничиться фрагментом поверхности в ближнем полупространстве;

б) на промежутке

В случае затруднений не спешим и рассуждаем по аналогии с предыдущими примерами, благо, технология досконально отработана. Не критично, если поверхности будут получаться немного корявыми – важно правильно отобразить принципиальную картину. Я и сам особо не заморачиваюсь над красотой линий, если получился сносный чертёж «на троечку», обычно не переделываю. В образце решения, кстати, использован ещё один приём, позволяющий улучшить качество чертежа;-)

Гиперболические цилиндры

Направляющими таких цилиндров являются гиперболы . Этот тип поверхностей, по моим наблюдениям, встречается значительно реже, чем предыдущие виды, поэтому я ограничусь единственным схематическим чертежом гиперболического цилиндра :

Принцип рассуждения здесь точно такой же – обычная школьная гипербола из плоскости непрерывно «размножается» вверх и вниз до бесконечности.

Рассмотренные цилиндры относятся к так называемым поверхностям 2-го порядка , и сейчас мы продолжим знакомиться с другими представителями этой группы:

Эллипсоид. Сфера и шар

Каноническое уравнение эллипсоида в прямоугольной системе координат имеет вид , где – положительные числа (полуоси эллипсоида), которые в общем случае различны . Эллипсоидом называют как поверхность , так и тело , ограниченное данной поверхностью. Тело, как многие догадались, задаётся неравенством и координаты любой внутренней точки (а также любой точки поверхности) обязательно удовлетворяют этому неравенству. Конструкция симметрична относительно координатных осей и координатных плоскостей:

Происхождение термина «эллипсоид» тоже очевидно: если поверхность «разрезать» координатными плоскостями, то в сечениях получатся три различных (в общем случае)