20.09.2019

Сила трения роль силы трения. Вычисляем значение силы в задаче. Сила трения в жидкостях и газах


Трение - это сила, которая противостоит движению объекта. Чтобы остановить движущийся объект, сила должна действовать в направлении, противоположном направлению движения. Например, если толкнуть мяч, лежащий на полу, он будет двигаться. Сила толчка перемещает его на другое место. Постепенно мяч замедляется и перестает двигаться. Сила, которая противостоит движению объекта, называется трением. В природе и в технике существует огромное количество примеров применения этой силы.

Типы трения

Существуют различные типы трения:

  • Лезвие конька, движущееся по льду, является примером скольжения. Когда фигурист двигается по катку, нижняя часть коньков касаются пола. Источником трения является контакт между поверхностью лезвия и льдом. Вес объекта и тип поверхности, по которой он перемещается, определяют величину скольжения (трения) между двумя объектами. Тяжелый предмет оказывает большее давление на поверхность, над которой он скользит, поэтому трение скольжения будет больше. Поскольку трение возникает из-за сил притяжения между поверхностями объектов, его количество зависит от материалов этих двух взаимодействующих объектов. Попробуйте кататься на коньках по гладкому озеру, и вам будет намного легче, чем кататься по грубой гравийной дороге!

  • Трение покоя (сцепления) - сила, которая возникает между 2 контактирующими телами и препятствует появлению движения. Например, чтобы сдвинуть с места шкаф, забить гвоздь или завязать шнурки, нужно преодолеть силу сцепления. Подобных примеров трения в природе и технике существует масса.
  • Когда вы катаетесь на велосипеде, контакт между колесом и дорогой является примером трения качения. Когда объект катится по поверхности, сила, необходимая для преодоления трения качения, намного меньше, чем требуется для преодоления скольжения.

Кинетическое трение

Когда вы толкнули книгу на столе и она переместилась на определенное расстояние, то она испытала трение, воздействующее на движущиеся объекты. Эта сила известна как сила кинетического трения. Она воздействует на одну поверхность другой, когда две поверхности натирают друг друга, потому что движутся одна или обе поверхности. Если вы положите дополнительные книги поверх первой книги, чтобы увеличить нормальную силу, сила кинетического трения будет увеличиваться.

Существует следующая формула: F трения = μF n. Сила кинетического трения равна произведению коэффициента кинетического трения и нормальной силы. Существует линейная зависимость между этими двумя силами. Коэффициент кинетического трения связывает силу трения с нормальной силой. Раз это сила, единицей для ее измерения является Ньютон.

Статическое трение

Представьте, что вы пытаетесь подтолкнуть диван по полу. Вы нажимаете на него с небольшой силой, но он не двигается. Статическая сила трения действует в ответ на усилие, с попыткой вызвать движение неподвижного объекта. Если на объект нет такой силы, сила статического трения равна нулю. Если есть сила, пытающаяся вызвать движение, то вторая будет увеличиваться до максимального значения до того, как она будет преодолена, и начнется движение.

Формула для этого вида: F трения = μsF n. Статическая сила трения меньше или равна произведению коэффициента статического трения μ (s) и нормальной силы F (n). В примере про диван максимальная сила статического трения уравновешивает силу человека, надавливающего на него, до момента, когда диван начнет двигаться.

Измерение коэффициентов трения

От чего зависит сила трения? В природе и технике материалы, из которых сделаны поверхности, играют определенную роль. Например, представьте, что вы пытаетесь играть в баскетбол, нося носки вместо спортивной обуви. Это может значительно ухудшить ваши шансы на победу. Обувь помогает обеспечить силу, необходимую для торможения и быстрого изменения направлений во время бега по поверхности. Между вашей обувью и баскетбольной площадкой трения больше, чем между вашими носками и полированным деревянным полом.

Различные коэффициенты показывают, как легко один объект может скользить по сравнению с другим. Точные их измерения достаточно чувствительны к условиям поверхностей и определяются экспериментально. Влажные поверхности ведут себя совершенно иначе, чем сухие поверхности.

Физика: сила трения природе и технике

Вы испытываете трение все время, и вы должны быть рады, что это возможно. Именно эта сила помогает сохранять неподвижные объекты на месте, а человеку не падать при ходьбе. В природе и технике примеры можно встретить на каждом шагу. Вы можете этого не осознавать, но вы уже хорошо знакомы с этой силой. Оно происходит в направлении, противоположном движению, и из-за этого это сила, которая влияет на движение объектов.

Когда вы передвигаете коробку по полу, трение работает против коробки в направлении, противоположном движению коробки. Когда вы идете вниз по горе, трение работает против вашего движения вниз. Когда вы нажимаете на тормоз в машине и двигаетесь еще какое-то время, трение работает против вашего направления скольжения, что помогает в конечном итоге полностью остановить скольжение.

Когда два объекта "втираются" друг в друга, устанавливаются силы притяжения между молекулами объектов, вызывая трение. В природе и технике оно может происходить между практически любыми фазами материи - твердыми веществами, жидкостями и газами. Трение происходит между двумя объектами, такими как коробка и пол, но также может происходить между рыбой и водой, в которой они плавают, и предметами, падающими в воздухе. Трение из-за воздуха имеет особое название: сопротивление воздуха.

Роль трения в природе, технике, жизни

Трение является неотъемлемой частью человеческого опыта. Нам нужна тяга, чтобы ходить, стоять, работать и ездить. В то же время нам нужна энергия, чтобы преодолеть сопротивление движению, поэтому слишком много трения требует избыточной энергии для выполнения работы, что приводит к неэффективности. В 21 веке человечество столкнулось с двойной проблемой нехватки энергии и глобального потепления от сжигания ископаемого топлива. Таким образом, способность контролировать трение стала сегодня главным приоритетом в современном мире.Тем не менее у многих понимание фундаментальной природы трения все еще отсутствует.

Трение в природе и технике (физика) всегда было предметом любопытства. Интенсивное изучение происхождения этой силы началось в 16 веке, после новаторской работы Леонардо да Винчи. Однако прогресс в понимании его природы был медленным, что затруднялось отсутствием инструмента для точного измерения. Гениальные эксперименты, выполненные ученым Кулоном и другими, дали важную информацию, чтобы заложить основу для понимания. Начиная с конца 1800-х и начала 1900-х годов появились паровые двигатели, локомотивы, а затем самолеты. Также освоение космоса требует четкого понимания трения и способности контролировать его.

Значительный прогресс в том, как применять и контролировать трение в природе технике, в быту, был сделан путем проб и ошибок. В начале 21 века появилось новое измерение нано-масштабного трения в связи с использованием нано-технологий. Человеческое понимание атомного и молекулярного трения быстро расширяется. Сегодня энергоэффективность и производство возобновляемых источников энергии требуют непосредственного внимания, в то время как наука стремится к сокращению выбросов углерода. Способность контролировать трение становится важным шагом в поиске устойчивых технологий. Именно оно является показателем энергоэффективности. Если получится уменьшить ненужные потери энергии и увеличить текущую эффективность использования энергии, это даст время для разработки альтернативных источников энергии.

Примеры трения в жизни

Трение - это сила, которая носит резистивный характер. Она препятствует движению другого объекта, применяя некоторую силу. Но откуда генерируются эта сила? Во-первых, стоит начать рассматривать ее с молекулярного уровня. Трение, которое мы наблюдаем в повседневной жизни, может быть вызвано шероховатостью поверхности. Это то, что ученые считали долгое время основной причиной его появления.

Самыми простыми примерами трения в природе и технике являются следующие:

  • При ходьбе сила трения, которая воздействует на подошву, дает нам возможность двигаться вперед.
  • Прислоненная к стене лестница не падает на пол.
  • Люди завязывают шнурки на кроссовках.
  • Без силы трения машины не смогли бы ездить не только в гору, но и по ровной дороге.
  • В природе оно помогает животным лазать по деревьям.

Подобных пунктов существует множество, есть также случаи, где эта сила, наоборот, может помешать. Например, для уменьшения трения у рыб выделяется специальная смазка, благодаря которой, а также обтекаемой форме тела они могут спокойно передвигаться в воде.

Сила трения в жизни человека

В земных условиях трение всегда сопутствуют любому движению тел. При всех видах механического движения одни тела соприкасаются либо с другими телами, либо с окружающей их сплошной жидкой или газообразной средой. Такое соприкосновение всегда оказывает большое влияние на движение. Возникает сила трения, направленная противоположно движению.
Существует несколько видов трения:

Сила трения помогает начать движение и закончить его. Рассмотрим человеческий организм: сердце покрыто специальной слизью, между суставами есть жидкость, лёгкие находятся в специальной пленке.

    Человек производит аналогичную операцию: смазывает части двигателя.

    Жидкое трение – это сила сопротивления, возникающая при движении тела в жидкости или газе.

    Вывод : сила жидкого трения меньше силы сухого трения. Особенность жидкого трения состоит в том, что сила жидкого трения покоя равна нулю.

Особенности движения тел в воде. Одно тело имеет форму шайбы, а другое форму капли, такая форма тела называется обтекаемой.

Вывод:

    Сила жидкого трения зависит от формы тела. Чтобы жидкое трение было меньше, тело должно иметь обтекаемую форму.

    Сила жидкого трения зависит от скорости движения тела: при небольшой скорости сила трения прямо пропорциональна скорости тела, при больших скоростях прямо пропорциональна квадрату скорости.

Во всех прочих случаях мы должны быть благодарны трению: оно даёт нам возможность ходить, сидеть и работать без опасения, что книги и чернильница упадут на пол, что стол будет скользить, пока не упрётся в угол, а перо выскальзывать из пальцев. Трение представляет настолько распространенное явление, что нам, за редкими исключениями, не приходится призывать его на помощь: оно является к нам само. Трение способствует устойчивости. Плотники выравнивают пол так, что столы и стулья остаются там, куда их поставили. Блюдца, тарелки, стаканы, поставленные на стол, остаются неподвижными без особых забот с нашей стороны, если только дело не происходит на пароходе во время качки.
Вообразим, что трение может быть устранено совершенно. Тогда никакие тела, будь они величиною с каменную глыбу или малы, как песчинки, никогда не удержатся одно на другом: всё будет скользить и катиться, пока не окажется на одном уровне. Не будь трения, Земля представляла бы шар без неровностей, подобно жидкому». К этому можно прибавить, что при отсутствии трения гвозди и винты выскальзывали бы из стен, ни одной вещи нельзя было бы удержать в руках, никакой вихрь никогда бы не прекращался, никакой звук не умолкал бы, а звучал бы бесконечным эхом, неослабно отражаясь, например, от стен комнаты. Наглядный урок, убеждающий нас в огромной важности трения, даёт нам всякий раз гололедица.

Застигнутые ею на улице, мы оказываемся беспомощными, и всё время рискуем упасть. Вот поучительная выдержка из газеты (декабрь 1927 г.): «Лондон, 21. Вследствие сильной гололедицы уличное и трамвайное движение в Лондоне сильно затруднено. Около 1400 человек поступило в больницы с переломами рук, ног и т. д.

«При столкновении вблизи Гайд-Парка трёх автомобилей и двух трамвайных вагонов машины были уничтожены из-за взрыва бензина…» «Париж, 21. Гололедица в Париже и его пригородах вызвала многочисленные несчастные случаи…» Однако Ничтожное трение на льду может быть успешно использовано технически. Уже обыкновенные сани служат тому примером. Ещё лучше свидетельствуют об этом так называемые ледяные дороги, которые устраивали для вывозки леса с места рубки к железной дороге или к пунктам сплава. На такой дороге, имеющей гладкие ледяные рельсы, две лошади тащат сани, нагруженные 70 тоннами брёвен.

В жизни многих растений трение играет положительную роль. Например, лианы, хмель, горох, бобы и другие вьющиеся растения благодаря трению могут цепляться за находящиеся поблизости опоры, удерживаются на них и тянутся к свету. Между опорой и стеблем возникают достаточно большое трение, т.к. стебли многократно обвивают опоры и очень плотно прилегают к ним.

У растений, имеющих корнеплоды, такие, как морковь, свекла, брюква, сила трения о грунт способствует удержанию их в почве. С ростом корнеплода давление окружающей земли на него увеличивается, а это значит, что сила трения тоже возрастает. Поэтому так трудно вытащить из земли большую свеклу, редьку или репу.

Таким растениям, как репейник, трение помогает распространять семена, имеющие колючки с небольшими крючками на концах.

Эти колючки зацепляются за шерсть животных и вместе с ними перемещаются. Семена же гороха, орехи благодаря своей шарообразной форме и малому трению качения перемещаются легко сами.

Организмы многих живых существ приспособились к трению, научились его уменьшать или увеличивать. Тело рыб имеет обтекаемую форму и покрыто слизью, что позволяет им развивать при плавании большую скорость.

Щетинистый покров моржей, тюленей, морских львов помогает им передвигаться по суше и льдинам.

Ученым недавно стало известно, как устроена кожа дельфинов, и почему они меняют свою кожу каждые 2 часа. Кожа дельфина обладает особым демпфирующим действием, позволяющим гасить турбулентность. Эта гипотеза высказана в 1957 г. немецким инженером Крамером и в настоящее вpeмя подтверждена экспериментально. Передняя часть тела дельфина обтекается ламинарно, а позади спинного плавника пограничный слой становится турбулентным.

Таким образом, «мягкость» или «волнистость» кожи дельфинов помогают им значительно уменьшать трение при скольжении в воде, а потеря частиц кожи по всему телу создает в процессе движения водовороты воды, которые сглаживают трение с потоком вокруг дельфина. Применение аналогичных технологий скольжения при строительстве судов, позволит повысить скорость движения кораблей.

У животных и человека образующие сустав кости не касаются друг друга; они покрыты суставным хрящом, который выполняет роль буфера между костными поверхностями.

А по краям хряща прикрепляется синовиальная оболочка, в которой имеется жидкость, уменьшающая трение между суставными поверхностями. Проблема трения и изнашивания в суставах решена природой на таком уровне, о котором инженеры - трибологи мoгут пока только мечтать. Ежедневные нагрузки, например, в тазобедренном суставе человека превышают тысячу ньютонов при прыжках, а трение и изнашивание практически отсутствует. В результате безотказная работа в течение всей жизни!

Дело в том, что суставная жидкость по своему составу сходна с плазмой крови, но обладает большей вязкостью, чем кровь. Внутреннее трение суставной жидкости падает в сотни раз при резком повышении скорости! Кроме того, тончайший слой этого необычного вещества ведет себя при сжатии так же, как слой резины. Поэтому трение, возникающее при скольжении в этой специфической среде, имеет весьма мало общего со знакомым жидким трением. При ходьбе, жидкость начинает выдавливаться из капилляров хряща, усиливая смазочное действие, и уменьшая трение. Суставная жидкость обладает необычной способностью резко увеличивать вязкость под давлением. В итоге процесс выдавливания смазки из хряща автоматически регулируется под действием нагрузки.

Интересно решается в живой природе инженерная задача равномерного прокачивания жидкостей по трубам.

В момент «рабочeго хода» сердца артерии упрyго расширяются, накапливая энергию. Зато в промежутках между сокращениями сердечных мышц скопленная в артериях энергия проталкивает кровь дальше в более мелкие сосуды, обеспечивая не только постоянство скорости движения, но и меньший расход энергии. Упрyгость сосудов возникает блaгодаря присутствию в артериальных стенках особого вещества ­ эластина. Снижению потерь на трение способствует также особый, напоминающий ламинарный, режим течения крови в сосудах

Чтобы увеличить сцепление с грунтом, стволами деревьев, на конечностях животных имеется целый ряд различных приспособлений: когти, острые края копыт, подковные шипы, тело пресмыкающихся покрыто бугорками и чешуйками.

Действие органов хватания (хватательные органы жуков, клешни рака; передние конечности

и хвост некоторых пород обезьян; хобот слона) тоже тесно связано с трением.

Ведь предмет или живое существо будет тем прочнее схвачено, чем больше трение между ним и органом хватания. Величина же силы трения находится в прямой зависимости от прижимающей силы.

Поэтому органы хватания устроены так, что могут либо охватывать добычу с двух сторон и зажимать ее, либо обвивать несколько раз и за счет этого стягивать с большой силой.

Кости животных и человека в местах их подвижного сочленения имеют очень гладкую поверхность, а внутренняя оболочка полости сустава выделяет специальную жидкость, которая служит суставной «смазкой».

При глотании пищи и ее движении по пищеводу трение уменьшается за счет предварительного дробления и пережевывания пищи, а также смачивания ее слюной.
При действии же органов движения у животных и человека трение проявляется как полезная сила.

У многих живых организмов существуют приспособления, благодаря которым трение получается небольшим при движении в одном направлении и резко увеличивается при движении в обратном направлении. Это, например, шерсть и чешуйки, растущие наклонно к поверхности кожи. На этом принципе основано движение дождевого червя.

Щетинки, направленные назад, свободно пропускают тело червя вперед, но тормозят обратное движение. При удлинении тела головная часть продвигается вперед, а хвостовая остается на месте, при сокращении головная часть задерживается, а хвостовая подтягивается к ней.

Водяной жук - вертячка изумительно быстро носится на поверхности воды. Чтобы захватить их сачком, требуется большая ловкость. Вертячка - лучший пловец среди водных жуков.

Оказывается, быстроте передвижения он во многом обязан покрывающей тело жировой смазке, которая значительно уменьшает трение о воду.

Чикиров Руслан, Назаренко Яна

Проект учащихся по теме "Трение"

Скачать:

Предварительный просмотр:

Исследовательская работа

Трение

и его значение в жизни человека

Выполнили: Назаренко Яна и

ЧикировРуслан

Учащиеся 9 «А» класса

МОУ ЧСОШ №2

Руководитель Маликова Г.Н.

2010г.

Какую роль играет сила трения в нашей жизни?

Цель: Выяснить, какую роль играет сила трения в нашей жизни, как человек получил знания об этом явлении, какова её природа.

Задачи:

  1. Проследить исторический опыт человечества по использованию и применению этого явления;
  2. Выяснить природу явления трения, закономерности трения;
  3. Провести эксперименты, подтверждающие закономерности и зависимости силы трения;
  4. Продумать и создать демонстрационные эксперименты, доказывающие зависимость силы трения от силы нормального давления, от свойств соприкасающихся поверхностей, от скорости относительного движения.

План:

  1. Природа силы трения
  2. Сущность явления трение
  3. Виды трения
  4. Исследования, эксперименты, опыты
  5. Факторы, от которых зависит сила трения
  6. Роль сил трения
  7. Вывод

Наши исследования:

  1. Сведения из больницы
  2. Сведения из ГИБДД
  3. Социологический опрос
  4. Эксперименты, опыты

Трение – явление, сопровождающее нас с детства, буквально на каждом шагу, а потому ставшее таким привычным и незаметным.

Изучили пословицы, поговорки, сказки, в которых проявляется сила трения покоя, качения, скольжения:

Не будет снега, не будет и следа.

Тяжело против воды плыть.

Терпенье и труд всё перетрут.

От того и телега запела, что давно дёгтя не ела.

Сказки: «Колобок» – трение качения («Колобок полежал, полежал, взял да и покатился – с окна на лавку, с лавки на пол, по полу к двери, прыг через порог – да в сени и покатился…»);

«Курочка Ряба» – трение качения («Мышка бежала, хвостиком вильнула, яичко покатилось,

Упало и разбилось);

«Репка» – трение покоя; – «Медвежья горка» – трение скольжения и другие.

Возьмём монету и потрём её о шероховатую поверхность. Мы отчётливо ощутим сопротивление – это и есть сила трения. Если тереть быстрее, монета начнёт нагреваться, напомнив нам о том, что при трении выделяется теплота – факт, известный ещё человеку каменного века, ведь именно таким способом люди впервые научились добывать огонь.

Трение даёт нам возможность ходить, сидеть, работать без опасения, что книги и тетради упадут со стола, что стол будет скользить, пока не упрётся в угол, а ручка выскользнет из пальцев.

Трение способствует устойчивости. Плотники выравнивают пол так, что столы и стулья остаются там, где их поставили. Маленькое трение на льду может быть успешно использовано технически. Свидетельство этому так называемые ледяные дороги, которые устраивали для вывозки леса с места рубки к железной дороге или к пунктам сплава. На такой дороге, имеющей гладкие ледяные рельсы, две лошади тащат сани, нагруженные 70 тоннами брёвен.

Трение – не только тормоз для движения. Это и ещё и главная причина изнашивания технических устройств, проблема, с которой человек столкнулся также на самой заре цивилизации.

И в наше время борьба с изнашиванием технических устройств – важнейшая инженерная проблема, успешное решение которой позволило бы сэкономить десятки миллионов тонн стали, цветных металлов, резко сократить выпуск многих машин, запасных частей к ним.

Виды сил трения: трение покоя, скольжения, качения.

Трение покоя:

Для того, чтобы выяснить сущность этого явления, можно провести несложный эксперимент.

Положим брусок на наклонную доску. При не слишком большом угле наклона доски брусок может остаться на месте. Что удерживает этот брусок от соскальзывания вниз?

Конечно же, трение покоя.

Трение скольжения: Из-за чего останавливаются санки, скатившиеся с горы? Из-за трения скольжения. Почему замедляет своё движение шайба, скользящая по льду? Вследствие трения скольжения, направленного всегда в сторону, противоположную направлению движения тела.

Трение качения: Если тело не скользит по поверхности другого тела, а, подобно колесу или цилиндру, катится, то возникающее в месте их контакта трение называют трением качения. Катящееся колесо несколько вдавливается в полотно дороги, и потому перед ним всё время оказывается небольшой бугорок, который необходимо преодолевать. Именно тем, что катящемуся колесу постоянно приходится наезжать на появляющийся впереди бугорок, и обусловлено трение качения.

Причины силы трения:

  1. Шероховатость поверхностей соприкасающихся тел. Даже те поверхности, которые выглядят гладкими, на самом деле всегда имеют микроскопические неровности (выступы, впадины). При скольжении одного тела по поверхности другого эти неровности зацепляются друг за друга и тем мешают движению;
  1. Межмолекулярное притяжение, действующее в местах контакта трущихся тел. Между молекулами вещества на очень малых расстояниях возникает притяжение. Молекулярное притяжение проявляется в тех случаях, когда поверхности соприкасающихся тел хорошо отполированы.

Трение играет в нашей жизни и положительную роль, но оно и опасно для нас, особенно в зимний период, период гололёдов.

Мы обратились в районную больницу с просьбой дать нам информацию о пострадавших от гололёда, обратившихся за медицинской помощью.

Данные из районной больницы о пострадавших от гололёда за зимний период 2009-2010гг:

Дети от 7-13 лет -6;

подростки 14-17 лет – 3;

люди пожилого возраста – 9.

Данные из ГИБДД о дорожно-транспортных происшествиях за зимний период:

Мы провели небольшой социологический опрос группы жителей, которым задавались следующие вопросы:

1) Что Вы знаете о явлении трение?

2) Как Вы относитесь к гололёду, скользким тротуарам и дорогам?

3) Ваши пожелания администрации нашего района.

В опросе участвовали люди разных возрастов (60 человек)

На первый вопрос основная масса опрошенных не могла ответить определенно, т.к. не видела связи между трением и повседневным опытом.

На второй вопрос дети и школьники средних классов говорили, что лёд им нравится, можно покататься; а люди постарше уже понимают, в чём заключается опасность этого явления. Они высказывали в адрес администрации ряд предложений, например:

Посыпать дороги и тротуары песком, солью;

Сделать хорошее освещение, чтобы были видны опасные места;

Ограничить во время гололёда скорость транспорта на улицах;

Проводить в школах беседы об оказании первой медицинской помощи в таких случаях;

Проводить встречи с инспекторами ГИБДД.

Факторы, от которых зависит сила трения:

  1. Сила трения не зависит от площади соприкасающихся тел, а зависит от материала тел;
  2. Сила трения зависит от силы, прижимающей данное тело к поверхности другого тела, т.е. от силы нормального давления;
  3. Модуль силы трения скольжения зависит от модуля относительной скорости.

Сила трения зависит от качества обработки трущихся поверхностей.

Экспериментально выяснили зависимость силы трения от следующих факторов:

От нагрузки;

От площади соприкосновения трущихся поверхностей;

От трущихся материалов.

Результаты экспериментов:

1. Зависимость силы трения скольжения от нагрузки. С увеличением нагрузки сила трения увеличивается.

2. Зависимость силы трения от площади соприкосновения трущихся поверхностей:

3. Зависимость силы трения от размеров неровностей трущихся поверхностей: дерево по дереву (различные способы обработки поверхности):

Используя экспериментальные данные, вычислили коэффициент трения скольжения для следующих материалов:

Роль силы трения:

В технике и в повседневной жизни силы трения играют огромную роль. В одних случаях силы трения приносят пользу, а в других - вред. Сила трения удерживает вбитые гвозди, винты, гайки; удерживает нитки в материи, завязанные в узлы и т.д. При отсутствии трения нельзя было бы сшить одежду, собрать станок, сколотить ящик.

Вывод:

Мы выяснили, что человек издавна использует знания о явлении трения, полученные опытным путём. Теперь мы точно знаем, от чего зависит сила трения, а что не влияет на неё. Теперь мы сможем объяснить все наблюдаемые в практике закономерности строением вещества, силой взаимодействия между молекулами.

Провели серию экспериментов, подтвердив все утверждения, высказанные нами. Но, наверное, самое главное – мы поняли, как здорово добывать знания самим, а потом делиться с другими. В дальнейшем мы хотели бы продолжить исследования по этой теме и расширить свои знания в области уменьшения сил трения в природе и технике.

Литература:

  1. Перышкин А.В. Физика 7 класс. – М.: Дрофа, 2006.
  2. Ламырева Н.А. Физика 9-11 классы. Проектная деятельность учащихся. – Волгоград: Учитель, 2008.

Все движения соприкасающихся тел друг относительно друга всегда происходят с трением: ось колеса испытывает трение в подшипнике, а его обод - трение о рельс; дверь открывается со скрипом, свидетельствующим о трении в петлях; шарик, катящийся по горизонтальному столу, останавливается под действием сил трения качения. Когда мы изучаем движение какого-нибудь тела и исключаем из рассмотрения трение, то мы, упрощая задачу, одновременно в той или иной степени искажаем действительное положение вещей. Во всех опытах, которые мы приводили для иллюстрации законов движения, мы предполагали, что трение отсутствует. В действительности же силы трения всегда влияют в большей или меньшей степени на характер движения.

Роль трения не всегда ограничивается торможением движений тел. Во многих случаях движение, например ходьба, становится возможным только благодаря действию сил трения, в частности трения покоя. При ходьбе мы ставим ноги на землю таким образом, что они должны были бы скользить назад, если бы силы трения покоя не существовало (действительно, когда мы пытаемся идти по гладкому льду, то ноги скользят назад). Так как сила трения покоя действует в направлении, противоположном тому, в котором должно было бы возникнуть скольжение, то возникает сила трения покоя, направленная вперед. Она и сообщает телу человека ускорение вперед.

Примерно так же обстоит дело и во всех самодвижущихся экипажах (велосипед, автомобиль, электровоз). Двигатель экипажа вызывает вращение ведущих колес. Если бы сила трения покоя отсутствовала, то экипаж оставался бы на месте и колеса начали бы буксовать, так что точки колеса, прикасающиеся в данный момент к земле или рельсам, проскальзывали бы назад. Возникающая сила трения покоя, действующая на колеса со стороны земли, направлена вперед и сообщает экипажу ускорение либо, уравновешивая другие силы, действующие на экипаж, поддерживает его равномерное движение. Если эта сила трения недостаточна (например, на льду), то экипаж не движется, а колеса буксуют. Наоборот, если у движущегося экипажа, колеса которого вращаются, замедлить вращение колес, не замедляя скорости самого экипажа, то в отсутствие сил трения колеса начали бы скользить по земле вперед; значит, в действительности возникает сила трения, направленная назад. На этом основано действие тормозов.

Если к электровозу прицеплен состав, то, как только электровоз двинется вперед, сцепка растянется и возникнет сила упругости сцепки, которая будет действовать на состав: это и есть сила тяги. Если увеличить силу, действующую со стороны двигателя на колеса, то увеличится и сила трения покоя, а значит, и сила тяги. Наибольшая сила тяги равна наибольшей силе трения покоя ведущих колес. При дальнейшем увеличении сил со стороны двигателя колеса начнут проскальзывать и тяга может даже уменьшиться.

Не менее важную роль играют силы трения покоя и в несамодвижущихся экипажах. Рассмотрим подробнее движение лошади, тянущей сани (рис. 72). Лошадь ставит ноги и напрягает мускулы таким образом, что в отсутствие сил трения покоя ноги скользили бы назад. При этом возникают силы трения покоя , направленные вперед. На сани же, которые лошадь тянет вперед через постромки с силой,со стороны земли действует сила трения скольжения , направленная назад. Чтобы лошадь и сани получили ускорение, необходимо, чтобы сила трения копыт лошади о поверхность дороги, была больше, чем сила трения, действующая на сани. Однако, как бы ни был велик коэффициент трения подков о землю, сила трения покоя не может быть больше той силы, которая должна была вызвать скольжение копыт (§ 64), т. е. силы мускулов лошади. Поэтому даже тогда, когда ноги лошади не скользят, все же она иногда не может сдвинуть с места тяжелые сани. При движении (когда началось скольжение) сила трения несколько уменьшается; поэтому часто достаточно только помочь лошади сдвинуть сани с места, чтобы потом она могла их везти.

66.1. Объясните роль сил трения при передаче движения от одного шкива к другому посредством приводного ремня.