13.04.2019

Как сделать освещение на солнечных батареях? Системы солнечного освещения Solatube®


Почти в каждой оранжерее обязательно растут экзотические растения из тропических стран, где и солнца больше, и день длиннее. Без искусственного освещения многие растения просто не выживут. Или выживут, но разве ж это жизнь: не зацвести, не разрастись как следует.

При освещении, максимально приближенному к естественному, растения счастливы. И об этом хорошо бы подумать на стадии проектирования зимнего сада.


Естественное освещение

Есть у меня один недостаток, - пишет пользователь kidar . - Недостаток денег. Поэтому реализация очень многих задумок растягивается на непозволительно большой период.

Горячая, но пока не до конца реализованная мечта форумчанина - оранжерея. По диплому он инженер-электрик, поэтому продумать освещение помещения ему было легко. Вся архитектура его оранжереи направлена на то, чтобы растения получали как можно больше солнечного света.

Ориентация на юг позволяет максимально полно использовать свет Солнца.


Благодаря арочной конструкция с рассчитанным наклоном солнечный свет всегда падает перпендикулярно большей части поверхность панели.


Прозрачное покрытие занимает половину потолка, а это обеспечивает освещенность, которую не даст даже сплошное остекление стен.


Белые стены и светлый пол отражают свет и повышают общий уровень освещенности.


Благодаря неидеальной прозрачности сотового поликарбоната свет в помещении рассеянный.

Освещать или досвечивать?

Освещенность - световая величина, равная отношению светового потока, падающего на малый участок поверхности, к его площади . Так говорят энциклопедии. В практическом плане можно провести аналогию с лейкой: нужно понимать, сколько воды попадает на конкретную морковку, чтобы посчитать, как долго поливать грядку.


Освещенность обратно пропорциональна квадрату расстояния от лампы до поверхности. То есть, если вы передвинули лампу, которая висела в 25 сантиметрах над растениями, и теперь она висит на высоте полметра, то освещенность уменьшиться в четыре раза. Еще освещенность зависит от величины угла, под которым расположена лампа. Это как солнце – в зените летом оно освещает землю в несколько раз больше, чем в зимний день, повиснув низко над горизонтом. Все это надо учитывать.


Планируя освещение своей оранжереи, подумайте, какого количества света не хватает вашим растениям, собираетесь ли вы их досвечивать или полностью освещать. Если нужно только досвечивать, то можно обойтись дешевыми люминесцентными светильниками, почти не заботясь об их спектре. Но лучше выбирать более длинные лампы – они мощнее, и светоотдача у них лучше.


А если естественного освещения нет, то подумать о спектре все-таки придется.


Синий и красный


Как мы помним из школьных уроков биологии, свет в растении поглощается различными пигментами, в основном, хлорофиллом, и происходит это в синем и красном участках спектра. И если правильно подбирать спектр, чередовать длительность светлого и темного периодов в оранжерее, то можно ускорять или замедлять развитие растения, сокращать вегетационный период и т.д. Поэтому, например, в теплицах используются натриевые лампы, у которых большая часть излучения приходится на красную область спектра. Пигменты с пиком поглощения в синем участке отвечают за рост растения и развитие листьев. Растения, выросшие под обычной лампой накаливания, обычно чрезмерно высокие: им не хватает синего цвета, и они тянутся вверх, чтобы получить хоть немного.


Лампы накаливания – самый дешевый, но самый плохой источника света для растений не только из-за отсутствия синего цвета в спектре. Большая часть электроэнергии в них превращается в тепло, поэтому такие лампы размещают как можно дальше от цветов, а это еще снижает их эффективность. Их используют разве что для нагревания воздуха и в комбинации с люминесцентными лампами холодного света, в спектре которых мало красного.

Получается, что светильники в оранжерее должны содержать как красные, так и синие цвета спектра, и сейчас это предлагают многие производители люминесцентных ламп. Фитолампы больше подходят для растений, чем обычные люминесцентные, которые используются в комнатах.


«Максимум излучения в фитолампах приходится на красную и синюю части спектра потому, что именно эти части нужны растениям для фотосинтеза. А у ламп "дневного света" преобладает белая часть спектра, удобная для наших глаз и "ненужная" растениям» - говорит пользователь ANTI-killer .


Для больших зимних садов подойдут газоразрядные лампы. Они считаются самыми яркими. Одна такая компактная лампа способна освещать большую площадь оранжереи.


Но все специализированные лампы намного дороже обычных, и, как считают наши форумчане, можно просто установить мощную лампу с высоким коэффициентом цветопередачи (маркировка лампы начинается на 9). В ее спектре будут все необходимые составляющие. Бонус: она даст намного больше света, чем специальная лампа.


Световой день


Есть ли предельное количество света для растений? На и этот вопрос, конечно, обсуждался.


Десс:


Солнце дает до 100 000 лк, так что лампами почти нереально этого достичь. Самый дешевый вариант - люминесцентные лампы. Недостаток - светоотдача в 1,5 раза меньше.

Натриевые лампы и светодиоды имеют одинаковую светоотдачу, но при одинаковой мощности лампы дешевле светодиодов в 8 -10 раз, так что светодиоды пока однозначно проигрывают. Но через 3-5 лет это может измениться - светодиоды дешевеют.


Обычно в оранжереях светильники устанавливают над растениями примерно в полуметре от верхнего листа. Для светолюбивых растений высота сокращается до 15 сантиметров. Опытные цветоводы делают так: размещали лампы повыше, а потом постепенно приближали к ним растения, устанавливая их на различные подставки. Чем выше становится растение, тем меньше подставка, потом ее можно убрать совсем.

Светильник должен размещаться по всей длине стеллажа с растениями. Если лампы небольшой мощности, то их монтируют по несколько штук и снабжают отражателями. Общая мощность ламп на квадратный метр площади с растениями должна составлять 100-150 Вт.


В зимнем саду форумчанина Димы Данилова три вида освещения: свет из окон, искусственная подсветка из люминесцентных ламп под потолком и свисающих фитоламп. В солнечные дни фитолампы не включаются. В прошлом году была очень «серая» зима, поэтому использовались оба дополнительных источников подсветки.


Форумчанин располагает фитолампы на расстоянии 10-30 см от высоких растений и до полуметра от низких. Никаких проблем не возникает - нагрев у ламп небольшой. «В зимнем саду без фитоламп не обошелся бы, т.к. обычные люминесцентные не спасли бы», - говорит Дима Данилов .


А вот Sazanvld считает, что «все фитолампы и натриевые лампы - это полный развод честных людей на их кровные денежки». Он предпочитает металлогалогенные лампы, в частности, прожектора. Вот его аргументы:

1) КПД у них самый высокий, не зря же их применяют для освещения стадионов и зданий. Соответственно, и экономичные они.

2) Спектр, идеально подходящий для растений. Продвинутые аквариумисты и те, кто выращивают аквариумные растения на продажу, используют именно их.

3) Невысокая цена, при этом одна лампа освещает 3-4 квадратных метра.

Главное, не путать металлогаллогенные прожектора с обычными галогенными (такие не подходят).

Таинственно и красиво


В темное время суток зимний сад будет выглядеть таинственно и прекрасно, если расставить лампы в его отдельных уголках, желательно под растениями. Разноцветные лампы позволят добиться волшебного, космического эффекта. Декоративные элементы оранжереи хорошо освещать светильниками с отражателями, которые создают направленный поток света.

Идеальные источники света для подсветки растений созданы на основе полупроводниковых светодиодов, которые излучают по всему видимому диапазону: от ближнего инфракрасного до ультрафиолетового. Кроме того, срок их службы практически неограничен. Именно такое освещение применяется в космических гидропонных оранжереях. Но они очень дороги, поэтому не особенно распространены.

Нерегулярное дополнительное освещение не будет иметь никакого смысла. Включая светильники от случая к случаю, вы только собьете биоритмы растений. Для полноценного развития растениям, особенно тропическим, нужен длинный световой день, часов на 12-14. Тогда они будут цвести и хорошо себя чувствовать. В идеале подсветку надо включать за несколько часов до рассвета и выключать через несколько часов после того, как солнце закатится за горизонт. Чтобы не подгонять свой режим под капризные растения, можно пользоваться двухрежимным таймером-реле.


О самом бюджетном варианте оранжереи читайте . А это видео рассказывает о большом доме с оранжереей – возможно, вы почерпнете из него несколько хороших идей.

1. Световой поток

Световой поток - мощность лучистой энергии, оцениваемая по производимому ею световому ощущению. Энергия излучения определяется количеством квантов, которые излучаются излучателем в пространство. Энергию излучения (лучистую энергию) измеряют в джоулях. Количество энергии, излучающейся в единицу времени называется потоком излучения или лучистым потоком. Измеряется поток излучения в ваттах. Световой поток обозначается Фе.

где: Qе - энергия излучения.

Поток излучения характеризуется распределением энергии во времени и в пространстве.

В большинстве случаев, когда говорят о распределении потока излучения во времени, не учитывают квантового характера возникновения излучения, а понимают под этим функцию, дающую изменение во времени мгновенных значений потока излучения Ф(t). Это допустимо, поскольку число фотонов, излучаемых источником в единицу времени, очень велико.

По спектральному распределению потока излучения источники разбивают на три класса: с линейчатым, полосатым и сплошным спектрами. Поток излучения источника с линейчатым спектром состоит из монохроматических потоков отдельных линий:

где: Фλ - монохроматический поток излучения; Фе - поток излучения.

У источников с полосатым спектром, излучение происходит в пределах достаточно широких участков спектра - полос, отделенных одна от другой темными промежутками. Для характеристики спектрального распределения потока излучения со сплошным и полосатым спектрами пользуются величиной, которая называется спектральной плотностью потока излучения

где: λ - длина волны.

Спектральная плотность потока излучения - это характеристика распределения лучистого потока по спектру и равняется отношению элементарного потока ΔФeλ соответствующего бесконечно малому участку, к ширине этого участка:

Спектральная плотность потока излучения измеряется в ваттах на нанометр.

В светотехнике, где основным приемником излучения является глаз человека, для оценки эффективного действия потока излучения, вводится понятие светового потока. Световой поток - это поток излучения, оценивающийся его действием на глаз, относительная спектральная чувствительность которого определяется усредненной кривой спектральной эффективности, утвержденной МКО.

В светотехнике используется и такое определение светового потока: световой поток - это мощность световой энергии. Единица светового потока - люмен (лм). 1лм соответствует световому потоку, излучаемому в единичном телесном угле точечным изотропным источником с силой света 1 кандела.

Таблица 1. Типичные световые величины источников света:

Типы ламп Электрическая энергия, Вт Световой поток, лм Световая отдача лм/вт
100 Вт 1360 лм 13,6 лм/Вт
Люминесцентная лампа 58 Вт 5400 лм 93 лм/Вт
Натриевая лампа высокого давления 100 Вт 10000 лм 100 лм/Вт
Натриевая лампа низкого давления 180 Вт 33000 лм 183 лм/Вт
Ртутная лампа высокого давления 1000 Вт 58000 лм 58 лм/Вт
Металлогалогенная лампа 2000 Вт 190000 лм 95 лм/Вт

Световой поток Ф, падая на тело, распределяется на три составные части: отраженную телом Фρ , поглощенную Фα и пропущенную Фτ . При используют коэффициенты: отражения ρ = Фρ /Ф; поглощения α =Фα /Ф; пропускания τ =Фτ /Ф.

Таблица 2. Световые характеристики некоторых материалов и поверхностей

Материалы или поверхности Коэффициенты Характер отражения и пропускания
отражения ρ поглащения α пропускания τ
Мел 0,85 0,15 - Диффузное
Эмаль силикатная 0,8 0,2 - Диффузное
Алюминий зеркальный 0,85 0,15 - Направленное
Зеркало стеклянное 0,8 0,2 - Направленное
Стекло матированное 0,1 0,5 0,4 Направленно-рассеянное
Стекло молочное органическое 0,22 0,15 0,63 Направленно-рассеянное
Стекло опаловое силикатное 0,3 0,1 0,6 Диффузное
Стекло молочное силикатное 0,45 0,15 0,4 Диффузное

2. Сила света

Распределение излучения реального источника в окружающем пространстве не равномерно. Поэтому световой поток не будет исчерпывающей характеристикой источника, если одновременно не определяется распределение излучения по разным направлениям окружающего пространства.

Для характеристики распределения светового потока пользуются понятием пространственной плотности светового потока в разных направлениях окружающего пространства. Пространственную плотность светового потока, определяющуюся отношением светового потока к телесному углу с вершиной в точке размещения источника, в пределах которого равномерно распределен этот поток, называют силой света:

где: Ф - световой поток; ω - телесный угол.

Единицей силы света является кандела. 1 кд.

Это сила света, испускаемая в перпендикулярном направлении элементом поверхности черного тела, площадью 1:600000 м2 при температуре затвердевания платины.
Единица силы света - кандела, кд является одной из основных величин в системе СИ и соответствует световому потоку 1 лм, равномерно распределенному внутри телесного угла 1 стерадиан (ср.). Телесный угол - часть пространства, заключенная внутри конической поверхности. Телесный угол ω измеряется отношением площади, вырезаемой им из сферы произвольного радиуса, к квадрату последнего.

3. Освещенность

Освещенность - это количество света или светового потока, падающего на единицу площади поверхности. Она обозначается буквой Е и измеряется в люксах (лк).

Единица освещенности люкс, лк имеет размерность люмен на квадратный метр (лм/м2).

Освещенность можно определить как плотность светового потока на освещаемой поверхности:

Освещенность не зависит от направления распространения светового потока на поверхность.

Приведем несколько общепринятых показателей освещенности:

    Лето, день под безоблачным небом - 100 000 люкс

    Уличное освещение - 5-30 люкс

    Полная луна в ясную ночь - 0,25 люкс

4. Отношение между силой света (I) и освещенностью (Е).

Закон обратных квадратов

Освещенность в определенной точке на поверхности, перпендикулярной к направлению распространения света, определяется как отношение силы света к квадрату расстояния от этой точки до источника света. Если данное расстояние мы примем за d, то это отношение можно выразить следующей формулой:

Для примера: если источник света излучает свет силой 1200 кд в направлении, перпендикулярном к поверхности, на расстоянии 3-х метров от этой поверхности, то освещенность (Ер) в точке, где свет достигает поверхности, будет 1200/32 = 133 лк. Если поверхность находится на расстоянии 6м от источника света, освещенность будет 1200/62= 33 лк. Это отношение называется "закон обратных квадратов" .

Освещенность в определенной точке на поверхности, не перпендикулярной направлению распространения света, равняется силе света в направлении точки измерения, разделенной на квадрат расстояния между источником света и точкой на плоскости умноженной на косинус угла γ (γ - угол, образованный направлением падения света и перпендикуляром к этой плоскости).

Следовательно:

Это закон косинуса (рисунок 1.).

Рис. 1. К закону косинуса

Для расчета горизонтальной освещенности целесообразно изменить последнюю формулу, заменив расстояние d между источником света и точкой измерения на высоту h от источника света к поверхности.

На рисунке 2:

Тогда:

Получаем:

По данной формуле рассчитывается горизонтальная освещенность в точке измерения.

Рис. 2. Горизонтальная освещенность

6. Вертикальная освещенность

Освещение той же точки Р в вертикальной плоскости, ориентированной к источнику света, можно представить как функцию высоты (h) источника света и угла падения (γ) силы света (I) (рисунок 3).

светимостью :

Для поверхностей конечных размеров:

Светимость - это плотность светового потока, испускаемого светящейся поверхностью. Единицей светимости служит люмен на метр квадратный светящейся поверхности, что отвечает поверхности площадью 1 м2, которая равномерно излучает световой поток 1 лм. В случае общего излучения вводится понятие энергетической светимости излучающего тела (Me).

Единица энергетической светимости - Вт/м2.

Светимость в этом случае можно выразить через спектральную плотность энергетической светимости излучающего тела Meλ(λ)

Для сравнительной оценки приводим энергетические светимости к светимости некоторых поверхностей:

    Поверхность солнца - Ме=6 107 Вт/м2;

    Нить лампы накаливания - Ме=2 105 Вт/м2;

    Поверхность солнца в зените - М=3,1 109 лм/м2;

    Колба люминесцентной лампы - М=22 103 лм/м2.

Это сила света, излучаемая единицей площади поверхности в определенном направлении. Единица измерения яркости - кандела на метр квадратный (кд/м2).

Поверхность сама по себе может излучать свет, как поверхность лампы, или отражать свет, который поступает из другого источника, например поверхность дороги.

Поверхности с разными свойствами отражения при одинаковой освещенности будут иметь разную степень яркости.

Яркость, излучаемая поверхностью dA под углом Ф к проекции этой поверхности, равняется отношению силы света, излучаемого в данном направлении, к проекции излучающей поверхности (рис. 4).


Рис. 4. Яркость

Как сила света, так и проекция излучающей поверхности, не зависят от расстояния. Следовательно, яркость также не зависит от расстояния.

Несколько практических примеров:

    Яркость поверхности солнца - 2000000000 кд/м2

    Яркость люминесцентных ламп - от 5000 до 15000 кд/м2

    Яркость поверхности полной луны - 2500 кд/м2

    Искусственное освещение дорог - 30 люкс 2 кд/м2

Свет, излучаемый Солнцем, достигает всех девяти планет Солнечной системы. Но освещенность каждой из них зависит от расстояния между Солнцем и планетой. Чтобы убедиться в этом, достаточно посмотреть ночью на звезды.

Многие из них такие же яркие светила (а некоторые даже ярче), как и наше Солнце. Но они находятся столь далеко от нас, что их свет не в состоянии хорошо осветить нашу планету.

Меркурий и Солнце

С Меркурия, ближайшей к Солнцу планете, Солнце выглядит огромным слепящим шаром: его диаметр в три раза больше диаметра «нашего» Солнца(которое мы видим с планеты Земля). Днем поверхность Меркурия залита очень ярким светом, а небо остается черным и видны звезды, потому что на Меркурии нет атмосферы, которая бы отражала и рассеивала солнечный свет. Когда свет Солнца падает на безжизненные скалы Меркурия, их температура повышается до 430 градусов Цельсия. Ночью же это тепло быстро рассеивается в пространстве и температура тех же скал опускается до минус 170 градусов Цельсия.

Материалы по теме:

Почему ночью темно?

Венера и Солнце

Венера, вторая после Меркурия планета, окружена атмосферой, которая состоит в основном из углекислого газа. В этой атмосфере взвешены и перемещаются зловонные облака паров серной кислоты. Эти облака очень плотные, поэтому на Венере всегда пасмурно. Хотя Венера дальше от Солнца, чем Меркурий, температура на ее поверхности подчас бывает выше. Почему? Срабатывает парниковый эффект. Слой углекислого газа удерживает тепло на поверхности планеты, как стекло парника не дает теплу покинуть оранжерею. Поэтому температура на поверхности Венеры достигает 480 градусов Цельсия.

Интересны факт : хотя Меркурий самая близкая к Солнцу планета, но небо там черное даже днем и всегда видны звезды, потому что на Меркурии нет атмосферы.

КУХНЯ - НА СЕВЕР, СПАЛЬНЯ - НА ВОСТОК

Недостаток естественного освещения в квартире негативно отражается не только на обмене веществ и общем физическом здоровье человека. Отсутствие света также может привести к снижению настроения и даже депрессивным состояниям у жильцов. Если вы чувствуете угнетенность и раздражительность без особых причин, задумайтесь - а правильно ли освещено ваше жилье, достаточно ли солнечных лучей попадает в него?

Портал недвижимости Stopmakler подготовил для читателей небольшой ликбез о правильном расположении комнат разного назначения относительно сторон света, для обеспечения правильной инсоляции жилья.

Конечно, количество комнат в современных квартирах нечасто позволяет выбирать назначение того или иного помещения в зависимости от стороны света. Однако, присматривая для себя новое жилье, обязательно нужно обратить внимание, куда «смотрят» его окна, чтобы потом не мучиться догадками, почему же вам так неуютно в новой квартире.

ПРИНЯТЫЕ НОРМЫ ИНСОЛЯЦИИ

Проектируя новый дом, специалисты всегда проводят расчет инсоляции. Как разъясняет Григорий Алтухов, глава ФСК «Лидер», при вычислении коэффициента инсоляции жилья учитываются многие факторы:

Географическая широта, на которой будет располагаться дом (от нее зависит угол падения лучей солнца, когда оно достигает зенита);
- параметры квартиры (ширина и конструкция оконных проемов);
- наличие затеняющих объектов (рядом стоящие дома) - и т. д.

По принятым санитарным нормам и правилам (СанПиН), инсоляция в жилых помещениях должна соответствовать нормативной продолжительности. Например, для Москвы, входящей в центральную зону, инсоляция жилья должна быть не менее двух часов в день. Такая продолжительность инсоляции для 1-3-комнатных квартир по правилам обеспечивается не менее чем в одной из комнат. Для многокомнатных квартир - не менее чем в двух комнатах.

Коммерческий директор корпорации «Баркли» Екатерина Фонарева поясняет, что различные ограничения по расположению квартир действуют для каждого конкретного случая, но при этом имеется и одно общее ограничение. Оно заключается в том, что при проектировании все окна в квартире нельзя ориентировать только на север.

СЛОВО КОМПАСУ

Северная сторона - самая холодная и темная, поэтому в тех помещениях, где окна выходят на север, необходимо позаботиться об утеплении стен и окон. Кроме того, следует обеспечить и качественное искусственное освещение, которое будет возмещать малую инсоляцию.

Южная сторона - наиболее теплая и светлая, причем вне зависимости от времени года: и летом, и зимой южные комнаты хорошо прогреваются солнцем, получая достаточный объем инсоляции.

Восточная сторона дома хорошо прогревается солнцем в летний период, однако зимой сильно охлаждается. Утром комнаты, выходящие окнами на восток, пронизаны солнечным светом, а во второй половине дня он сменяется тенью.

Западная сторона больше других подвергается воздействию солнечных лучей и «продувается всеми ветрами». При проектировании домов, с западной стороны по возможности предусматриваются заградительные посадки деревьев.


БОЛЬШЕ СОЛНЦА - БОЛЬШЕ ЗДОРОВЬЯ

Правильная инсоляция жилья крайне важна для человеческого организма. При недостатке естественного освещения страдает обмен веществ, снижается острота зрения, замедляется рост детей. Также недостаточная инсоляция является причиной стресса: если в квартире мало света, у жильцов заметно снижается настроение, возникают депрессии и общая подавленность.

Покупатели жилья обращают повышенное внимание на его освещенность. Вкусы расходятся только в том, что кто-то любит свет вечернего солнца, а кто-то - утреннего, но темные квартиры не привлекают практически никого.

РАСПОЛОЖЕНИЕ КОМНАТ ПО СТОРОНАМ СВЕТА С УЧЕТОМ ИНСОЛЯЦИИ


Кабинет или мастерскую ориентируют «по компасу» в зависимости от того, в какое время дня это помещение будет использоваться. Если вы обычно начинаете работу с утра, то лучше, чтобы окна кабинета, как и спальни, выходили на восток или юго-восток. В этом случае мягкие утренние лучи взбодрят вас, а инсоляция от жаркого полуденного солнца будет направлена уже на западную сторону дома. Если же работа происходит в вечернее время, то кабинет или мастерскую лучше сделать с западной или юго-западной стороны: к вечеру солнечный свет становится не таким резким, как в полуденное время, но при этом инсоляция будет достаточной для рабочего места.

Кухню , кладовки и прочие подсобные помещения лучше всего ориентировать на север, северо-запад или северо-восток. Эти помещения не жилые, и поэтому интенсивная инсоляция в них не нужна.

ОПРЕДЕЛЯЕМ СТОРОНЫ СВЕТА


Для того чтобы сориентироваться по сторонам света, не обязательно иметь под рукой компас - в большинстве случаев будет достаточно просто посетить будущую квартиру в безоблачный солнечный день. Например, в средней полосе России солнце в семь часов утра находится на восточной стороне, к часу дня оно перемещается на юг, а в семь вечера освещает дом с западной стороны.

Стороны света можно определить и по расположению находящегося рядом с домом православного храма. Нижняя перекладина креста на куполе своим опущенным концом всегда обращена на юг, а поднятым - на север. Алтарь в православном храме всегда располагается на восточной стороне.

Также можно сориентироваться по сторонам света и при помощи обычных часов со стрелками. Такие часы располагают горизонтально, направляя часовую стрелку в сторону солнца. Зимой угол между часовой стрелкой и цифрой 1 делится пополам, и его биссектриса всегда указывает на юг. Летом же необходимо делить пополам угол между часовой стрелкой и цифрой 2 - биссектриса этого угла тоже будет лежать в южном направлении.

Все чаще владельцы загородных домов задумываются о применении бесплатных источников энергии. Сэкономить на электричестве помогает установка светильников на солнечных батареях. При желании можно создать систему освещения всего дома, которая работает от солнечных батарей.

Достоинства автономного солнечного освещения на улице

Перед описанием преимуществ следует отметить, что часто автономное уличное освещение лишь частично зависит от солнечного света, так как некоторые места участка придется освещать стационарно. Это связано с тем, что светильники на солнечных батареях не всегда освещают пространство достаточно ярко.

Светильники, работающие на солнечных батареях, имеют несколько преимуществ:

  1. Описываемые устройства для дачи не нужно никуда подключать, они работают автономно. После установки они готовы к работе и не требуют дополнительных работ. Выключение таких устройств происходит автоматически благодаря датчикам.
  2. Светильники на солнечных батареях не требуют специального ухода. Иногда необходимо протирать фотоэлементы от пыли и загрязнений.
  3. Долговечность. Описываемые устройства могут работать больше 10 лет.
  4. Светильники являются безопасными, так как они работают от низкого напряжения.
  5. Если светильники приобретаются для дачи, можно найти светильники. Которые можно установить временно, а в зимнее время убрать их в помещение.

Таким образом, светильники для дачи, которые работают на солнечных батареях, могут позволить сэкономить большое количество денег, которое могло быть потрачено на освещение.

Недостатки автономного освещения

К минусам описываемых устройств можно отнести:

  1. Уличные светильники на солнечных батареях не дают достаточно яркого света. Именно поэтому их не получится использовать в качестве охранного освещения. Существуют мощные устройства, которые являются достаточно яркими, но они отличаются большой стоимостью, поэтому не все владельцы участков способны их приобрести.
  2. Количество часов работы напрямую зависит от погодных условий. Во время пасмурного дня светильники запасают недостаточно энергии, поэтому ее хватает на несколько часов.
  3. Надежные мощные светильники имеют большую стоимость. При этом такие устройства работают дольше и создают более яркий световой поток.
  4. Солнечные панели могут работать только в определенном диапазоне температур. Такие изделия плохо переносят морозы и высокую температуру в летнее время. Чаще всего они используются в регионах с умеренным климатом.

Несмотря на все описанные минусы, автономное освещение позволяет сэкономить большое количество средств на освещении большого участка.

Светильники на солнечных батареях

Уличные светильники могут отличаться по многим параметрам, но все они состоят из следующих компонентов:

  1. Солнечная панель. Данное устройство необходимо для переработки солнечной энергии в электрическую. Панель всегда обращена вверх, чтобы лучше улавливать солнечный свет.
  2. Аккумулятор, необходимый для накопления энергии в светлое время суток.
  3. Осветительный блок, который состоит из плафона, лампы и корпуса.
  4. Контроллер, необходимый для включения и отключения лампы. Это происходит благодаря датчикам освещенности окружающего пространства.
  5. Крепление, необходимое для подвешивания светильника или его установки.

Автономное освещение для дома

Освещение для дома создается по принципу гелиостанции. На крыше дома размещаются фотомодули. Дополнительное оборудование обычно располагается в техническом помещении.

Во время работы системы в солнечных батареях происходит выработка электроэнергии, которая затем накапливается в аккумуляторах. После этого она расходуется на осветительные приборы.

В устройстве имеется контроллер заряда, который следит за состоянием аккумулятора. Благодаря этому элементу систему не происходит перезаряд и обратный разряд. В устройстве имеется инвертор, который преобразует постоянный ток в переменный, подающийся в электросеть. При использовании солнечных батарей лампы в доме заменяются на светодиодные.

Если используются светильники на 12 В, то инвертор не требуется. Следует отметить, что освещение на 12 В является более безопасным и не требует использования качественной проводки. Электроснабжение на солнечных батареях можно использовать и для фонарей, которые расположены на участке. Но во время создания системы освещения необходимо учитывать, что энергопотребление всех устройств не должно превышать вырабатываемой мощности.

При отсутствии знаний многим будет сложно организовать качественное освещение. Но если знать несколько основных правил, провести такие работы может даже неопытный человек.

Сначала необходимо составить проект, в котором будет отображено расположение всех светильников. На этапе подготовки также важно определиться с типом солнечных батарей. Благодаря плану можно выбрать наиболее подходящее место для расположения фонарей. Это позволит равномерно распределить светильники.

Если устанавливаются газонные фонари, лучше всего делать это вдоль тротуара или дороги. Такие светильники не только освещают пространство, но и способствуют созданию определенного стиля участка. Но при этом не стоит забывать и о

Если вы желаете создать систему освещения в саду, лучше всего использовать специальные садовые устройства, которые работают автономно, не подключаясь при помощи проводов.

Как выбрать светильник для уличного освещения

При желании купить устройство, работающее благодаря солнечному свету, необходимо подробно рассмотреть технические характеристики светильников. В первую очередь необходимо обратить внимание на мощность. Во время приобретения фонаря важно узнать, на какое расстояние светит прибор. От этого будет зависеть количество покупаемых изделий. Следует отметить, что в случае со светодиодными светильниками мощность мало о чем говорит.

Чтобы понять, насколько ярким будет определенный прибор, следует сравнить мощность изделий с мощностью стандартных ламп накаливания, но перевести этот параметр в Люмы. После этого можно будет понять. Какой мощности светильники вам нужны.

Модели мощностью 1 Вт дают примерно столько же света, как лампы накаливания мощностью 20 Вт. Именно поэтому такие устройства обычно используются для освещения садовых дорожек и подсветки беседки.

Кроме этого, следует обратить внимание на класс защиты и материал, из которого изготовлен корпус. Чтобы уличное освещение работало долго и надежно, необходимо выбирать изделия в корпусе, который защищен от попадания влаги и пыли. Благодаря этому, фонари будут использоваться в течение длительного времени и не потребуют замены компонентов.

Желательно выбирать световые приборы, имеющие класс защиты не менее IP44. Кроме этого, следует обратить внимание на материал корпуса. Чаще всего светильники изготавливаются из ударопрочного пластика и металла.

Виды светильников по способу монтажа

Во время приобретения приборов, работающих благодаря солнечному свету, следует рассмотреть все виды таких изделий по типу монтажа. Это поможет понять, какие приборы удобнее установить на участке и в доме. Устройства, приобретаемые для уличного освещения, разделяются на следующие виды:

  1. Изделия, устанавливаемые в грунт. Такие светильники обычно создаются на ножках высотой от 20 см до метра. Для их установки достаточно воткнуть ножку в грунт.
  2. Светильники-столбы. Такие модели отличаются большей высотой и требуют более серьезной работы по установке. Для этого необходимо выкапывать лунку и уплотнять грунт после установки. Некоторые изделия предназначены для установки на такие покрытия, как асфальт и плитка.
  3. Настенные светильники. Такие устройства могут быть установлены как на стену дома, так и на заборные столбы.
  4. Подвесные. Чаще всего закрепляются в беседках и на крыльце. Некоторые владельцы участков развешивают такие приборы на ветвях больших деревьев.
  5. Встраиваемые в грунт или другие материалы. Такие светильники позволяют осветить дорожки и лестницы. Свет от подобных приборов не слепит глаза, а уровень освещенности остается достаточно хорошим.
  6. Декоративные приборы. Подобные светильники в дневное время выглядят как декоративные элементы сада, а в ночное время излучают свет. Они могут быть размещены в любом месте сада. Но при установке нужно учитывать, что они сильно влияют на оформление сада, поэтому важно установить их в определенных местах.

Учитывая особенности всех описываемых светильников можно правильно подобрать изделия для собственного участка и не только сделать его освещенным в ночное время, но еще и украсить пространство.

Световые ловушки

Желая создать систему солнечного освещения в доме, стоит приобрести ловушки для света - именно так называют изделия, которые состоят из нескольких зеркал и направляют солнечные лучи в наименее освещенные участки комнаты. Правильно установив их в доме, можно значительно увеличить уровень освещенности в дневное время.