03.02.2019

Выбираем керамический нагреватель: характеристики и отзывы, цены. Изготовление керамического нагревательного элемента.


Это перегоревшая спираль нагревательного элемента. Даже если есть в наличии нихромовая проволока подходящего диаметра и длины, намотать новую спираль практически может, не получится (для паяльника, рассчитанного на напряжение 220 вольт точно), уж больно близко должны располагаться витки спирали друг к другу чтобы поместилось необходимое количество. Такая намотка под силу только специальному оборудованию. Не беру в расчёт отдельных энтузиастов, которым это удалось. Что же касается паяльников рассчитанных на напряжение 110 вольт и ниже (), то тут уже всё более реально. Необходимое сопротивление нагревательного элемента (нихрома) гораздо ниже и соответственно длина проволоки, которую надо намотать должным образом, значительно меньше. Но есть ещё изолирующий диэлектрик под названием слюда, которая по своей сути «недотрога» - крошится и рассыпается даже при самом нежном с ней обращении. Короче больше заниматься не собирался и вдруг нахожу информацию, что слюду может прекрасно заменить тандем, состоящий из самого обычного талька и конторского клея, которые образуют защитное покрытие сродни керамическому. Попробовал - получилось.

Для изготовления миниатюрного нагревательного элемента необходимо: нихром диаметром до 0,1 мм, тонкая (чуть толще нихрома) не упругая стальная проволока, асбестовая нить и самая тонкая швейная игла, вставленная в разметочный предмет чертёжного набора под названием «готовальня». Первое действие это прочное и компактное соединение концов нихромовой и стальной проволок методом скрутки.


Теперь нужно собрать представленную схему. Она поможет определиться с длиной нихромовой проволоки, из которой следует намотать нагревательную спираль.


Когда всё подключено, плавно увеличиваем напряжение, смотрим на показания вольтметра блока питания и амперметра. В данном случае при напряжении в 11 вольт токопотребление составило практически 0,5 А. Перемножив эти показатели, получаем ориентировочную мощность будущего нагревательного элемента - 5,5 Вт. Спираль ещё не разогрелась до красна (на полную мощность) и не надо её жечь, уже и так ясно, что можно будет по готовности нагревательного элемента подавать на него и 12 и даже 13 вольт. Так что желаемая мощность в 8 Вт будет легко достигнута. Напоследок замеряется сопротивление участка нихромовой проволоки, на которую подавалось напряжение - для сопоставимого контроля длины при намотке спирали.


Для начала процесса намотки стальная проволочка продевается в тоже «ушко», что и иголка, на которую насажена асбестовая нить призванная выполнить роль оправки для намотки спирали и одновременно основания будущего нагревательного элемента. Важно - перед началом намотки место соединения нихрома и стальной проволочки должно находиться, по крайней мере, в нескольких миллиметрах (2 - 3 мм) от края асбестовой нити в сторону её середины (на верхнем фото сбилось, перед намоткой поправлял). Намотать лучше немного больше, когда игла будет вытащена отмотать лишнее можно легко - домотать, не получится. Снятую с иглы спираль на асбестовой нити измеряют на предмет определения сопротивления и подгоняют под необходимое.


Далее потребуется тальк и конторский (силикатный) клей. Предстоит самое неконкретное действие, ибо способ нанесения защитного слоя (полного диэлектрика в будущем, после высыхания) может в принципе быть разным. Предлагаю посмотреть видео с тем, который показался наиболее прогрессивным по всем показателям. И в первую очередь по расходу талька.

Видео

Это первый этап покрытия, второй после 10 минутного подсыхания. Можно в принципе и не делать, всё решает визуальный контроль при помощи увеличительного стекла. Витки нихрома не должно быть видно.


Почти готовый нагревательный элемент (осталась просушка), длина 15 мм, диаметр 2 мм. Оптимальное напряжение питания 12 В, мощность 8 Вт. Просушка - на горячую батарею отопления, на следующий день подключил к БП подал напряжение достаточное для нагрева до 50 градусов (контроль мультиметром в режиме измерения температуры) - дал остыть и разогрел до 100 градусов, потом ещё до 150. Можно ставить по месту, эксплуатационные испытания на следующий день.

Вывод

На этом заканчивать не собираюсь, метод весьма перспективный и многообещающий, в ближайших планах изготовление более крупного керамического нагревательного элемента. Изюминка метода в том, что спираль, лишённая контакта с кислородом воздуха более выносливая и соответственно долговечная. Автор материала - Babay iz Barnaula.

В промышленной и бытовой технике нашло применение множество различных элементов и деталей, разработанных людьми. В рамках статьи будет рассмотрено, что такое нагревательный элемент. Что он собой представляет? Для чего они предназначены и какие виды их существуют?

Где применяются современные нагревательные элементы?

Как было сказано, они являются составной частью промышленной и бытовой техники. Их можно встретить в электрических плитах, жарочных шкафах и духовках, электрочайниках, отопительных приборах, водонагревателях, электрокофеварках и многих других машинах. Замена нагревательного элемента может быть и простым, и весьма сложным делом. Всё зависит от техники, где они используются. В качестве основы нагревательного элемента используется проволока, обладающая высоким электрическим сопротивлением. В большинстве случаев она изготавливается из нихрома. Так какие электрические нагревательные элементы существуют и на данный момент широко используются?

Инфракрасные нагревательные элементы

Функционируя, они генерируют в окружающую среду инфракрасные лучи. Таким образом, осуществляется распространение тепла безопасным для человека образом. Инфракрасные нагревательные элементы способствуют постепенному и равномерному нагреву помещения (но приоритетной считается область, куда они направлены). Благодаря такому свойству они используются не только в домашних, но и в производственных и лабораторных условиях. К тому же данные приборы имеют низкую рабочую температуру (60-65 градусов), что позволяет использовать инфракрасные нагревательные элементы в качестве прибора для сушки для фруктов, овощей и грибов.


Карбоновая лампа

Является вакуумной трубкой, сделанной из кварцевого стекла. Внутри размещается излучающий элемент, который сделан из карбоновых (углеродсодержащих) волокон, свитых в жгут. Иногда его ещё называют спиралью, но это неправильно. Несмотря на то, что карбоновое волокно появилось относительно недавно, оно успешно завоевало себе место в ряде технологий, в том числе и при изготовлении нагревательных элементов. При подаче напряжения происходит моментальный разогрев. Благодаря волокнистой структуре увеличена площадь излучения, что ведёт к повышенной теплоотдаче. Это, в свою очередь, позволяет значительно экономить электроэнергию (по сравнению с использованием нихромовой основы).


Керамические инфракрасные излучатели

Являются обычными ТЭНами, которые размещены в керамическом корпусе. Теплом нагревается оболочка, а потом уже и внешняя среда. Благодаря значительной площади, которую имеет керамический нагревательный элемент, обогрев помещений осуществляется в ускоренном режиме (в сравнении с ТЭНом). Также их из-за размеров часто называют панельными инфракрасными нагревателями. Они могут быть вогнутыми, плоскими или выпуклыми. Рабочая температура, которую имеет керамический нагревательный элемент, колеблется обычно в диапазоне 700-750 градусов. Их параметры могут быть подобраны на все случаи. Существуют отдельные экземпляры, которые могут похвастаться значительными параметрами: так, открытый тип предназначен для быстрого обогрева помещения и может разогреваться до 900 градусов выше нуля!

Кварцевые и галогенные излучатели

Являются запаянной вакуумной трубкой, сделанной из кварцевого стекла. Внутри находится спираль, сделанная из металла, обладающего высоким сопротивлением. По сути, это галогенные лампы, у которых внутри вольфрамовая спираль. В зависимости от конструкции излучатели делят на два вида:

  1. Со средневолновым.
  2. С коротковолновым диапазоном.


В первых спираль выполнена в звездчатой форме. Во втором внутри кварцевой трубки расположена нить накала. Но почему были созданы различные конструкции? Дело в том, что галогенные излучатели, у которых поддерживается нить накала, могут нагреваться до температуры 2600 градусов. Данные элементы являются обладателями высокой мощности и имеют очень незначительное время реагирования. Где эти преимущества нашли применение? Они необходимы в кратких циклических процессах, в которых, тем не менее, необходима высокая удельная мощность, которую может дать указанный нагревательный элемент.

Силиконовые нагревательные элементы

Конструктивно они выглядят так: между двумя слоями силикона размещается вытравленная нагревательная пленка или провод. Несмотря на странность, таким образом можно получить элемент, который позволит получить разнообразные параметры готовой техники. Чтобы увеличить механическую прочность, производится армирование текстильным стекловолокном. Характеризируя их, следует сказать, что таким нагревателям требуется мало времени для нагрева и остывания. Они могут точно поддерживать температуру нагревательного элемента при помощи сенсора и термостата. Размеры их невелики: самые маленькие имеют толщину всего 0,7 миллиметра. Данный факт позволяет их использовать в различных областях: от подогрева бочек с красками или маслами, заканчивая аэрокосмическими аппаратами.


Силиконовые нагревательные элементы отличаются повышенной стойкостью к негативному воздействию сырости и влаги. Поэтому их используют в лабораторном оборудовании, сфере общественного питания и вообще в любых случаях, когда необходимо защитить аппаратуру от конденсата и замерзания. Единственное ограничение - температура рабочей среды: в большинстве случаев она не должна превышать 200 градусов.

Применяемыми в качестве самостоятельного или вспомогательного оборудования. Они характеризуются миниатюрностью и высокой производительностью, быстро нагревая воздух в помещениях. Оптимальным выбором по типу нагревательного элемента станет тепловентилятор керамический. Он создаст в комнатах комфортабельную атмосферу, не иссушая воздух и не сжигая кислород.

В этом обзоре, посвященном керамическим тепловентиляторам, мы рассмотрим:

  • особенности конструкции керамических моделей;
  • виды керамических обогревателей;
  • функционал оборудования;
  • системы безопасности керамических тепловентиляторов;
  • их достоинства и недостатки.

После прочтения данного материала вы получите максимум информации о отопительных приборах с керамическими нагревательными элементами.

Устройство и принцип работы керамического тепловентилятора

Благодаря своей конструкции тангенциальные вентиляторы используются в настенных и вытянутых напольных моделях.

Основными узлами любого подобного устройства являются сами вентиляторы и нагревательные элементы. Вентиляторы, гоняющие воздух, могут быть тангенциальными или осевыми. Первые используются в стационарных моделях, чаще всего в настенных. Они отличаются большими размерами, позволяя перегонять большие объемы воздушных масс. При этом обладают минимальным уровнем шума.

Осевые вентиляторы вращаются с большей частотой, чем их тангенциальные аналоги. Именно за счет этого достигается их высокая производительность. Но уровень шума, создаваемый осевыми вентиляторами, легко затмевает прочие преимущества . Впрочем, если производитель использовал нешумные вентиляторы и двигатели, то уровень шума будет вполне приемлемым и вряд ли помешает вам заснуть.

Тангенциальные вентиляторы применяются в настенных и потолочных обогревателях, а также во внутренних блоках стандартных бытовых сплит-систем.


Керамические пластины способствую быстрому прогреву воздуха, притом, что сами они не нагреваются до высоких температур.

Вернемся к нагревательным элементам – в керамических тепловентиляторах, как вы уже могли догадаться, используются керамические нагревательные элементы. В отличие от своих спиральных собратьев, они практически не сушат воздух и не сжигают кислород , так как прямого контакта раскаленного металла и воздушных масс здесь нет. Нагрев ведется исключительно за счет керамических пластин. Такая схема позволяет:

  • сохранить химический состав воздуха в помещениях;
  • сбавить тепловую нагрузку на корпуса оборудования;
  • избавиться от сгорания пыли – это способствует избавлению от неприятного запаха;
  • увеличить пожарную безопасность оборудования – керамические тепловентиляторы максимально безопасны почти для всех типов помещений.

Тепловентиляторы с керамическими нагревательными элементами меньше греются и лучше прогревают воздух, не сжигают пыль и не наполняют отапливаемые помещения ароматами гари. При этом прогрев осуществляется значительно быстрее, чем при использовании спиральных нагревательных элементов.

Принцип действия керамических электрических тепловентиляторов чрезвычайно простой – вентилятор засасывает воздух в прибор, где он нагревается от керамического нагревательного элемента, разогретого до высокой температуры. После этого он отправляется в помещения, постепенно прогревая их по всему объему. Благодаря применению производительных вентиляторов, эти отопительные приборы способны создать теплую атмосферу за считаные минуты.

Практическое использование подобных устройств показывает, что помещение площадью 20 кв. м прогревается буквально за 15-20 минут – в нем становится ощутимо теплее. Для самых простых конвекторов время прогрева составляет 2-3 часа.


Устройство прибора: 1 - корпус; 2 - керамический нагревательный элемент; 3 - вентилятор; 4 - блок управления.

Керамические тепловентиляторы для дома обладают простым устройством – их основу составляют всего три элемента:

  • непосредственно сам вентилятор – он обеспечивает прогон воздуха через нагревательный элемент;
  • нагревательный элемент с керамическими пластинами – он почти мгновенно нагревает воздух до определенной температуры ;
  • схема управления – обеспечивает поддержание заданной температуры.

Также в конструкции керамических нагревателей встречаются таймеры, ступенчатые регуляторы мощности, системы ионизации, воздушные фильтры, автоматические поворотные механизмы, увлажнители воздуха и многое другое. Все это позволяет обеспечить удобство управления и комфортную и здоровую атмосферу в отапливаемых помещениях.

Достоинства и недостатки

Главное достоинство любого тепловентилятора – очень быстрый прогрев помещений . Пока обычные нагревательные приборы пытаются плавно согреть воздух и окружающие предметы, тепловентиляторы прогоняют через себя большие потоки воздушных масс, обеспечивая создание тепла. Производительность этих отопительных приборов составляет от 50 кубометров воздуха в час – наиболее мощные модели могут прогонять через себя и большие объемы.


За счет своей конструкции и керамических нагревателей, данные устройства очень быстро прогревают помещение.

Прочие достоинства керамических тепловентиляторов:

  • пожарная безопасность – здесь нет открытых нагревательных элементов, непосредственно контактирующих с воздухом. Поэтому они редко вызывают возгорания. Еще одним фактором, влияющим на безопасность имущества и недвижимости граждан, является отсутствие перегрева корпусов;
  • миниатюрность – самый простой бытовой прибор мощностью 1-2 кВт представляет собой небольшую конструкцию, которая запросто поместится в коробку из-под обуви. Благодаря этому у потребителей появляется возможность не портить интерьеры громоздким отопительным оборудованием;
  • изобилие разновидностей – позволяет решать любые задачи по обогреву помещений. Например, в продаже имеются мощные устройства, которые могут работать как тепловая завеса. Они устанавливаются в дверных проемах, препятствуя проникновению холодного воздуха снаружи помещений;
  • легкость в управлении – самые простые модели управляются всего одной ручкой, совмещающей в себе выключатель и термостат;
  • мобильность – еще один важнейший аргумент в пользу тепловентиляторов (причем почти любых). Их можно быстро переносить с места на место, обеспечивая создание комфортных условий там, где это нужно.

Не обошлось и без недостатков:


Избавиться от шума при работе тепловентилятора невозможно, это очень мешает во время сна.

  • не все любят излишне горячий воздух – его скопления наблюдаются непосредственно вблизи оборудования. Поэтому не следует направлять тепловентиляторы прямо на людей;
  • шумность – какими бы ни были малошумящими применяемые вентиляторы, полностью избавиться от шума нельзя . Ночью это доставляет некоторым людям дискомфорт;
  • не рекомендуется использовать тепловентиляторы в качестве основного отопительного оборудования – лучше всего они справляются с ролью вспомогательного оборудования (например, помогут пригодиться на даче или в квартире, когда неожиданно отключилось центральное отопление).

Недостатки не самые страшные, но наличие какого-либо шума – это явный минус.

Громче всех шумят настенные керамические тепловентиляторы, используемые в качестве тепловых завес. Но они не рассчитаны на применение в жилых помещениях.

Виды керамических тепловентиляторов

Керамические тепловентиляторы выпускаются в нескольких форм-факторах. Они бывают:

  • настольными;
  • напольными;
  • настенными;
  • потолочными.

Настольные тепловентиляторы

Настольные тепловентиляторы – это явно маркетинговый ход, так как по своему внешнему виду и всем остальным параметрам они напоминают самые обычные напольные модели, которыми и являются. Они отличаются небольшими размерами и компактностью, а также очень легким управлением . Подобные модели оснащаются простыми механическими термостатами и переключателями мощности. Некоторые из них оснащаются поворотными механизмами, позволяющими обеспечить более равномерное распределение тепла по отапливаемым помещениям.

Представить себе настольную эксплуатацию такого прибора очень сложно – как-никак, летящий на человека горячий воздух будет раздражать, а не вызывать чувство комфорта. Впрочем, если здесь есть функция работы в режиме холодного вентилятора, то все не так уж и плохо.

Напольные керамические тепловентиляторы

Напольные керамические тепловентиляторы являются близкими родственниками настольных моделей. Фактически это они и есть, только некоторые модели могут отличаться увеличенными размерами. Например, в продаже встречаются вертикальные модели. Они обладают неплохим современным внешним видом и привлекательностью, позволяя обогревать большую площадь при минимальных собственных размерах. Высота их корпусов составляет 50-100 см.

Настенные керамические тепловентиляторы

Настенные керамические тепловентиляторы чем-то напоминают тепловые завесы и внутренние блоки сплит-систем одновременно. Здесь стоят тангенциальные вентиляторы, обеспечивающие непрерывный прогон воздушных масс. Нагрев воздуха осуществляется с помощью все тех же керамических нагревательных элементов, располагающихся по горизонтали. С целью более удобной эксплуатации такие приборы наделяются пультами дистанционного управления – не нужно тянуться до кнопок, когда вентилятор висит примерно на такой же высоте, как и сплит-система.

Потолочные тепловентиляторы

Потолочные тепловентиляторы – это не очень распространенное отопительное оборудование, предназначенное для установки в помещениях с высокими потолками. В быту чаще всего применяются напольные или настенные модели. Зато потолочные модели обеспечивают более равномерное распределение тепла – это является их определенным достоинством.

Рассматривая типы тепловентиляторов, нельзя не отметить их дележку по функционалу. В них встречаются:

  • дополнительные воздушные фильтры – они задерживают разлетающиеся потоками воздуха частицы пыли, что только улучшает показатели атмосферы. Такому дополнению будут рады аллергики;
  • ионизаторы воздуха – насыщают воздух полезными ионами, поддерживающими здоровье человека;
  • увлажнители воздуха – несмотря на отсутствие нагретой спирали, керамические тепловентиляторы могут слегка сушить воздух в помещениях. Наличие увлажнителя позволит улучшить состояние здоровья людей и нормализовать сон ;
  • функции работы в качестве обычного вентилятора – оборудование прогоняет через воздух без нагрева;
  • системы дистанционного управления – такие приборы комплектуются обычными пультами ДУ.

Также в продаже встречаются керамические тепловентиляторы с защитой от брызг – они предназначены для эксплуатации во влажных помещениях.

Устройства с электрическим управлением более удобны в ежедневной эксплуатации. Еще лучше если они укомплектованы пультом дистанционного управления.

Еще одно отличие – по типу управления. Керамические тепловентиляторы для дома оснащаются системами управления электронного или механического типа. Электронные системы обладают повышенной точностью и расширенным функционалом – они умеют точно отслеживать температуру, показывать ее значение на экране и работать в соответствии с заложенной программой . Простые механические термостаты менее точные, зато тепловентиляторы с ними обладают более доступной ценой – это их большой плюс.

Где выгоднее купить керамический тепловентилятор? Мы рекомендуем ознакомиться с ориентировочными ценами на "Яндекс.Маркете" и посетить крупные сетевые магазины, в которых часто проводятся распродажи. Ориентировочная стоимость самого простого напольного/настольного прибора мощностью 1,5 кВт составляет примерно 1000-1200 рублей.

Безопасность устройства


Высокие стоячие модели подвержены падениям, выбирайте модели с защитой от опрокидывания.

Что обеспечивает безопасность керамических вентиляторов? Самое главное – это их конструкция, включающая в себя безопасные нагревательные элементы на основе керамических пластин. Также в них встречается защита от перегрева – она не позволит оборудованию выйти из строя из-за превышения определенной температуры.

Не меньшую защиту обеспечивает система защиты при опрокидывании – она мгновенное отключает нагревательный элемент, препятствуя не только перегреву оборудования, но и возникновению пожаров (представьте, что может произойти, если работающий тепловентилятор упадет на ковер и начнет медленно, но верно нагревать его – может возникнуть возгорание). Наибольшей склонностью к падению обладают высокие вертикальные модели.

Если вы планируете купить керамический тепловентилятор, обязательно убедитесь в наличии обеих систем защиты. Помните, что от них зависит ваша безопасность, безопасность ваших детей и вашего имущества.

Планируете использовать подобного прибора для обогрева влажных помещений – душевых или ванных комнат? В этом случае рекомендуем присмотреться к моделям с защитой от брызг. Они безопасны при использовании в помещениях с повышенным уровнем влажности и могут выдерживать случайное попадание мелких и крупных брызг.

Видео «Как выбрать керамический тепловентилятор»

Я уже делал обзор про этот паяльник. Но время идёт, и производитель вносит изменения в свою продукцию. Есть приятные изменения, а есть и не очень. Тот паяльник мне (и не только) понравился. Вот решили заказать такие же на работу, сразу два.
На тот момент в магазине была небольшая скидочка, поэтому обошлись они мне в US$25.98
за пару. Посылка дошла за три недели с полноценным треком. Странно, но ничего не помялось.



Тот паяльник мне понравился. Он всем понравился. Поэтому заказали сразу два.



Указан бренд и модель паяльника Tomizawa HM-880.



На картонке есть ссылка на сайт производителя:

Но он недоступен. Всё покрыто тайной.
С обратной стороны есть информация по жалам.



Но я рекомендую пользоваться хакковским обозначением. Оно привычнее.



Паяльники пришли с Неевропейской вилкой. На странице магазина вариантов для выбора нет.



Наверное, поэтому в качестве подарка в комплекте пришли два переходника/адаптера.



Я же рекомендую воспользоваться чем-нибудь из этого:


Хоть какая-то защита будет.
Перехожу к внешнему осмотру.
Заметил на шнуре непонятную набалдашку (сюрприз №1). Скинул гайку. А там ничего интересного. Обычный разъём.



В месте хвата и входа кабеля мягкие резинки. Точь-в-точь как на паяльной станции.



Кабель жёстковатый, длиной около метра.
При включении паяльник «моргает» светодиодами и переходит в дежурный режим. В ждущем режиме индикация отключается. При нажатии на кнопку последовательно (по кругу) переключает температурные режимы вплоть до дежурного режима. Переключение сопровождается световой индикацией.


На всякий случай взвесил.



Предыдущая версия была немного легче.
Перехожу к изучению самого паяльника.



Сначала сравнил жало из новой партии с тем, что прислали в прошлый раз.



Совместимость с хакковскими жалами абсолютная. Новое жало намного лучше. И меди больше, и размеры выдержаны лучше. Всё прилегает идеально с небольшим зазором для расширения при нагреве.
Но чтобы сравнить, сначала паяльник разобрал. Сложностей никаких.



Проверил магнитом.
Магнитится только носовая часть.

После часа работы пошла побежалость.



Сделал запил, чтобы увидеть, из чего сделано.



Внутри стальной стакан, снаружи толстый слой меди. Внешнее покрытие минимально.
Измерил глубину внутренней полости жала и длину выступающей части нагревательного элемента. Совпадение идеальное.



Это паяльник с керамическим нагревательным элементом. Нихромовые нагреватели выглядят немного по-другому, у них сверху стык замазан цементом. У керамических обычно вот такая ступенька (хотя ступеньки научились подделывать) и бороздка (её пока не подделывают), как на фото.



Краткая информация по керамическим нагревателям. Взята из интернета.



Трубчатый керамический нагреватель изготавливается печатью тонкодисперсным вольфрамовым порошком на керамической подложке, которая оборачивается вокруг керамического стержня из оксида алюминия и спекается в пламени водородной печи при t=1500 °C, образуя прочный, долговечный, термостойкий элемент с высоким сопротивлением изоляции - более 100 МОм, и может развивать температуру до 700 °C.
Электрическое сопротивление этого нагревателя увеличивается с ростом температуры (PTC - Positive Temperature Coefficient).
1.Именно это свойство я и наблюдал, когда падала мощность паяльника при увеличении температуры на пульте.
2. Характерная технологическая бороздка на нагревателе тоже присутствует.
Внешний диаметр нагревательного элемента 3,8мм.



Внутренний диаметр жала показал те же 3,8мм. На самом деле он чуть больше. Это особенность «штангеля» при измерениях внутренних малых отверстий.

Нагревательный элемент заходит свободно. Присутствует минимальный люфт (на расширение при нагреве).
Внешний диаметр 6,2мм.



Разбираю дальше.



Провод трёхжильный. Зажат хорошо.



Режим термостабилизации реализован необычно. К нагревательному элементу идёт всего два провода. Термопары нет. Скорее всего, измерение температуры реализовано через отслеживание изменения сопротивления керамического нагревателя или по току.
Третий провод идёт на корпус к пружинке.
Перехожу к блоку регулировки температуры.
Он находится на шнуре. Имеется отверстие для корректировки температуры.
Скреплён четырьмя саморезами.
Можно разглядеть более внимательно (вид с обеих сторон).


Флюс не отмыт. Основные элементы можете рассмотреть более детально:
оптрон MOC3020, микроконтроллер, ОУ LM358, индикатор температуры и симистор BT134(-600E).



Перехожу к тестированию.
Поработал паяльником в течение часа.
Жало облудилось хорошо. Паять одно удовольствие. Но «шнурок» можно б было подлиннее.



После часа работы и разгона до температуры в 480˚С на жале появились следы побежалости.
Измерил мощность. При включении холодного паяльника мощность максимальна. Затем понемногу падает.



Нагревается быстро. Но нагревает небольшими порциями, то включая, то отключая нагревательный элемент. Поэтому реальную мощность отследить сложно, хотя некоторые закономерности заметны.
С прогревом мощность потребления уменьшается. Вероятная причина - увеличение сопротивления нагревательного элемента.
Ещё раз повторю. Нагревает небольшими порциями, то включая, то отключая нагревательный элемент. Поэтому реальная (средняя) мощность потребления гораздо ниже.
Осталось проверить, насколько точно поддерживает температуру. Буду использовать девайс с выходом на компьютер. Так проще.



Чтобы не портить термопару, температуру измерял не на самом кончике, там, где нет припоя.
Последовательно нажимал на кнопочку на пульте:
200˚С→250˚С→300˚С→350˚С→400˚С→450˚С→480˚С.








Это не окончательные показания. Температура варьируется. Ещё раз повторю. Нагревает небольшими порциями, то включая, то отключая нагревательный элемент (по мере нагрева). Во время пайки температура может проседать на 20˚-30˚С.
На привычных рабочих температурах паяльник явно завышал. Вспомнил про подстроечник. Но в этом паяльнике я его не нашёл (сюрприз №2). Вот фото того, что есть и того, что было.



Такой разброс температур меня абсолютно не устроил. Сначала «разорвал соплю» на месте переменного сопротивления. Затем на место разрыва подпаял сопротивление 7,5кОм.



Сопротивление подбирал по соответствию температуры жала температуре пульта.
При добавочном сопротивлении 5,1кОм температура жала (при температуре на пульте 200˚С) =240˚С.
При добавочном сопротивлении 9,1кОм температура жала (при температуре на пульте 200˚С) =180˚С.
При добавочном сопротивлении 7,5кОм температура жала идеально (или почти идеально) совпадает с температурой на пульте во всём диапазоне.
Теперь меня всё устраивает.
Пора подводить итоги.
Плюсы:
+ Керамический нагревательный элемент.
+ Совместимость с жалами Хакко.
+ Регулировка температуры.
+ Термостабилизация.
Минусы:
-Короткий шнур питания.
-НЕнаша сетевая вилка.
-Пришлось немного потрудиться с установкой сопротивления.
Вот, в общем-то, и всё. Для правильного вывода того, что написал, должно хватить. Кому что-то неясно, задавайте вопросы. Возможно, какие-то моменты упустил.
Надеюсь, хоть кому-то помог.
Удачи!

Планирую купить +68 Добавить в избранное Обзор понравился +60 +110