08.03.2020

Электролизные установки для получения водорода. Электролизные установки. Модель с нижним расположением контейнера


В свое время с помощью электролиза из расплавов солей удалось впервые выделить чистые калий, натрий и многие другие металлы.

Сегодня этот процесс применяют и в быту – для «добычи» водорода из воды. Технология более чем доступна, ведь прибор для электролиза воды представляет собой всего лишь контейнер с раствором соды, в который погружены электроды.

Электродами служат небольшие квадратные листы, вырезанные из оцинкованной стали или, лучше, из нержавейки марки 03Х16Н15М3 (AISI 316L). Обычная сталь будет очень быстро «съедена» электрохимической коррозией.

Прорезав ножом отверстие в стенке контейнера, нужно установить на нем два фильтра грубой очистки – подойдут «грязевики» (второе название – косой фильтр) или фильтры от стиральных машин.

Следом устанавливаются плата толщиной 2,3 мм и барботажная трубка.

Завершается создание электролизера установкой форсунки с затвором, расположенным со стороны платы.

Устройство с верхним расположением контейнера

Электроды выполняются из нержавеющего листа размером 50х50 см, который нужно разрезать болгаркой на 16 равных квадратов. Один угол каждой пластины подрезается, а в противоположном выполняется отверстие под болт М6.

Один за другим электроды одеваются на болт, а изоляторы для них нарезаются из резиновой или силиконовой трубки. Как вариант, можно воспользоваться трубкой от водяного уровня.

Контейнер фиксируется при помощи штуцеров и только после этого устанавливаются барботажная трубка и электроды с клеммами.

Модель с нижним расположением контейнера

В этом варианте сборку прибора начинают с нержавеющего основания, размеры которого должны соответствовать размерам контейнера. Далее устанавливают плату и трубку. Монтаж фильтров в данной модификации не требуется.

Затем к нижней плате нужно прикрепить 6-миллиметровыми винтами затвор.

Установка форсунки осуществляется посредством штуцера. Если все же принято решение установить фильтры, то для их крепления следует использовать пластиковые зажимы на резиновых прокладках.

Готовое устройство

Толщина изоляторов между пластинами-электродами должна составлять 1 мм. При таком зазоре сила тока будет достаточной для качественного электролиза, в то же время пузырьки газа смогут легко оторваться от электродов.

К полюсам источника питания пластины подключаются поочередно, например, первая пластина – к «плюсу», вторая – к «минусу» и т.д.

Устройство с двумя клапанами

Процесс изготовления 2-клапанной модели электролизера не отличается особой сложностью. Как и в предыдущем варианте, сборку следует начинать с подготовки основания. Выполняется оно из стальной листовой заготовки, которую нужно подрезать в соответствии с размерами контейнера.

К основанию прочно крепится плата (применяем винты М6), после чего можно устанавливать трубку для барботажа диаметром не менее 33 мм. Подобрав к устройству затвор, можно приступать к монтажу клапанов.

Пластиковый контейнер

Первый устанавливается на основании трубы, для чего в этом месте необходимо закрепить штуцер. Соединение уплотняется зажимным кольцом, после чего устанавливается еще одна пластина – она понадобится для фиксации затвора.

Второй клапан следует монтировать на трубе с отступом от края в 20 мм.

С появлением водяной системы отопления, воздушная система незаслуженно потеряла свою популярность, но сейчас снова набирает обороты. – рекомендации по проектированию и монтажу.

Все об изготовлении и использовании чудо-печи о солярке вы узнаете .

А в этой теме разберем разновидности счетчиков тепла для квартиры. Классификация, конструктивные особенности, цены на приборы.

Модели на три клапана

Эта модификация отличается не только количеством клапанов, но также и тем, что основание для нее должно быть особенно прочным. Применяется все та же нержавеющая сталь, но большей толщины.

Место для установки клапана №1 нужно выбирать на входной трубе (она подсоединяется прямо к контейнеру). После этого следует закрепить верхнюю пластину и вторую трубку барботажного типа. Клапан №2 устанавливают на конце этой трубки.

Штуцер при установке второго клапана нужно крепить с достаточной жесткостью. Также потребуется зажимное кольцо.

Готовый вариант водородной горелки

Следующий этап – изготовление и установка затвора, после чего к трубе прикручивают клапан №3. При помощи шпилек он должен соединяться с форсункой, при этом посредством прокладок из резины должна быть обеспечена изоляция.

Вода в чистом виде (дистиллированная) является диэлектриком и чтобы электролизер работал с достаточной производительностью, ее следует превратить в раствор.

Наилучшие показатели демонстрируют не солевые, а щелочные растворы. Для их приготовления в воду можно добавить пищевую или каустическую соду. Также подойдут некоторые средства бытовой химии, например, «Мистер Мускул» или «Крот».

Устройство с оцинкованной платой

Очень распространенная версия электролизера, применяющаяся, главным образом, в системах отопления.

Подобрав основание и контейнер, соединяют винтами (их понадобится 4 шт.) платы. Затем сверху на приборе устанавливают изолирующую прокладку.

Стенки контейнера не должны обладать электропроводимостью, то есть быть изготовленными из металла. Если есть необходимость сделать емкость высокопрочной, нужно взять пластиковый контейнер, и поместить его в того же размера металлическую оболочку.

Остается прикрутить контейнер шпильками к основанию, и установить затвор с клеммами.

Модель с оргстеклом

Сборку электролизера с применением заготовок из органического стекла назвать простой задачей нельзя – данный материал достаточно сложен в обработке.

Трудности могут подстерегать и на этапе поиска контейнера подходящего размера.

В углах платы высверливают по одному отверстию, после чего приступают к монтажу пластин. Шаг между ними должен составлять 15 мм.

На следующем этапе переходят к установке затвора. Как и в других модификациях, следует применять прокладки из резины. Только нужно учесть, что в данной конструкции их толщина должна составлять не более 2-х мм.

Модель на электродах

Несмотря на слегка настораживающее название, эта модификация электролизера также вполне доступна для самостоятельного изготовления. В этот раз сборку прибора начинают снизу, укрепляя на прочном стальном основании затвор. Контейнер с электролитом, как и в одном из вышеописанных вариантов, расположим сверху.

После затвора приступают к монтажу трубки. Если размеры контейнера позволяют, ее можно оснастить двумя фильтрами.

  • лист не касается контейнера;
  • расстояние между ним (листом) и зажимными винтами должно составлять 20 мм.

При таком исполнении генератора водорода электроды следует крепить к затвору, размещая по другую сторону от него клеммы.

Применение пластиковых прокладок

Вариант изготовления электролизера с прокладками из полимеров позволяет применить алюминиевый контейнер вместо пластикового. Благодаря прокладкам, он будет надежно изолирован.

Вырезая прокладки из пластика (понадобится 4 шт.), необходимо придать им форму прямоугольников. Они укладываются по углам основания, обеспечивая зазор в 2 мм.

Теперь можно приступать к установке контейнера. Для этого понадобится еще один лист, в котором просверливают 4 отверстия. Их диаметр должен соответствовать наружному диаметру резьбы М6 – именно такими винтами будет прикручиваться контейнер.

Стенки у алюминиевого контейнера жестче, чем у пластикового, поэтому для более надежного крепления под головки винтов следует подложить шайбы из резины.

Остается заключительный этап – установка затвора и клемм.

Модель на две контактные клеммы

К основанию, выполненному из стального или алюминиевого листа, прикрепите при помощи цилиндров или винтов пластиковый контейнер. После этого нужно установить затвор.

В этой модификации применяется игольчатая форсунка диаметром в 3 мм или чуть больше. Ее нужно установить на свое место, подсоединив к контейнеру.

Теперь при помощи проводников нужно присоединить клеммы прямо к нижней плате.

Последним элементом монтируется трубка, причем место, в котором она присоединяется к контейнеру, должно быть уплотнено зажимным кольцом.

Фильтры можно позаимствовать в поломанных стиральных машинах либо установить обычные «грязевики».

Еще на шпинделе нужно будет закрепить два клапана.

Электрификация дома – важный этап в обустройстве нового здания. – рекомендации профессиональных электриков.

Как изготовить простой теплоаккумулятор своими руками, вы узнаете . А также обвязка и настройка системы.

Схематическое представление

Схематичное описание реакции электролиза займет не более двух строк: положительно заряженные ионы водорода устремляются к отрицательно заряженному электроду, а отрицательно заряженные ионы кислорода – к положительному. Для чего вместо чистой воды приходится применять электролитический раствор? Дело в том, что для разрыва молекулы воды требуется достаточно мощное электрическое поле.

Соль или щелочь выполняет значительную часть этой работы химическим путем: атом металла, имеющий положительный заряд, притягивает к себе отрицательно заряженные гидроксогруппы ОН, а щелочной или кислотный остаток, имеющий отрицательный заряд – положительные ионы водорода Н. Таким образом, электрическому полю остается только растащить ионы к электродам.

Схема электролизера

Наилучшим образом электролиз проходит в растворе соды, одна часть которой разбавляется в сорока частях воды.

Наилучшим материалом для электродов, как уже говорилось, является нержавеющая сталь, а вот для изготовления пластин лучше всего подходит золото. Чем большей будет их площадь и чем выше сила тока – тем в большем объеме будет выделяться газ.

Прокладки можно делать из различных токонепроводящих материалов, но лучше всего для этой роли подходит поливинилхлорид (ПВХ).

Заключение

Электролизер может эффективно применяться не только в промышленности, но и в обиходе.

Вырабатываемый им водород можно превратить в топливо для приготовления пищи, или обогащать им бензо-воздушную смесь, повышая мощность автомобильных двигателей.

Несмотря на простоту принципиального устройства прибора, умельцы научились изготавливать целый ряд его разновидностей: любую из них читатель сможет изготовить собственноручно.

Видео на тему

Электролиз широко используется в производственной сфере, например, для получения алюминия (аппараты с обожженными анодами РА-300, РА-400, РА-550 и т.д.) или хлора (промышленные установки Asahi Kasei). В быту этот электрохимический процесс применялся значительно реже, в качестве примера можно привести электролизер для бассейна Intellichlor или плазменный сварочный аппарат Star 7000. Увеличение стоимости топлива, тарифов на газ и отопление в корне поменяли ситуацию, сделав популярной идею электролиза воды в домашних условиях. Рассмотрим, что представляют собой устройства для расщепления воды (электролизеры), и какова их конструкция, а также, как сделать простой аппарат своими руками.

Что такое электролизер, его характеристики и применение

Так называют устройство для одноименного электрохимического процесса, которому требуется внешний источник питания. Конструктивно это аппарат представляет собой заполненную электролитом ванну, в которую помещены два или более электродов.

Основная характеристика подобных устройств – производительность, часто это параметр указывается в наименовании модели, например, в стационарных электролизных установках СЭУ-10, СЭУ-20, СЭУ-40, МБЭ-125 (мембранные блочные электролизеры) и т.д. В данных случаях цифры указывают на выработку водорода (м 3 /ч).

Что касается остальных характеристик, то они зависят от конкретного типа устройства и сферы применения, например, когда осуществляется электролиз воды, на КПД установки влияют следующие параметры:


Таким образом, подавая на выходы 14 вольт, мы получим 2 вольта на каждой ячейке, при этом на пластинах с каждой стороны будут разные потенциалы. Электролизеры, где используется подобная система подключения пластин, называются сухими.

  1. Расстояние между пластинами (между катодным и анодным пространством), чем оно меньше, тем меньше будет сопротивление и, следовательно, больший ток пройдет через раствор электролита, что приведет к увеличению выработки газа.
  2. Размеры пластины (имеется в виду площадь электродов), прямо пропорциональны току, идущему через электролит, а значит, также оказывают влияние на производительность.
  3. Концентрация электролита и его тепловой баланс.
  4. Характеристики материала, используемого для изготовления электродов (золото – идеальный материал, но слишком дорогой, поэтому в самодельных схемах используется нержавейка).
  5. Применение катализаторов процесса и т.д.

Как уже упоминалось выше, установки данного типа могут использоваться как генератор водорода, для получения хлора, алюминия или других веществ. Они также применяются в качестве устройств, при помощи которых осуществляется очистка и обеззараживание воды (УПЭВ, VGE), а также проводится сравнительный анализ ее качества (Tesp 001).


Нас, прежде всего, интересуют устройства, производящие газ Брауна (водород с кислородом), поскольку именно эта смесь имеет все перспективы для использования в качестве альтернативного энергоносителя или добавок к топливу. Их мы рассмотрим чуть позже, а пока перейдем к конструкции и принципу работы простейшего электролизера, расщепляющего воду на водород и кислород.

Устройство и подробный принцип работы

Аппараты для производства гремучего газа, в целях безопасности, не предполагают его накопление, то есть газовая смесь сжигается сразу после получения. Это несколько упрощает конструкцию. В предыдущем разделе мы рассмотрели основные критерии, влияющие на производительность аппарата и накладывающие определенные требования к исполнению.

Принцип работы устройства демонстрирует рисунок 4, источник постоянного напряжения подключен к погруженным в раствор электролита электродам. В результате через него начинает проходить ток, напряжение которого выше точки разложения молекул воды.

Рисунок 4. Конструкция простого электролизера

В результате этого электрохимического процесса катод выделяет водород, а анод – кислород, в соотношении 2 к 1.

Виды электролизеров

Кратко ознакомимся с конструктивными особенностями основных видов устройств для расщепления воды.

Сухие

Конструкция прибора данного типа была показана на рисунке 2, ее особенность заключается в том, что манипулируя количеством ячеек, можно запитать устройство от источника с напряжением, существенно превышающим минимальный электродный потенциал.

Проточные

С упрощенным устройством приборов этого вида можно ознакомиться на рисунке 5. Как видим, конструкция включает в себя ванну с электродами «A», полностью залитую раствором и бак «D».


Рис 5. Конструкция проточного электролизера

Принцип работы устройства следующий:

  • входе электрохимического процесса газ вместе с электролитом выдавливается в емкость «D» через трубу «В»;
  • в баке «D» происходит отделение от электролитного раствора газа, который выводится через выходной клапан «С»;
  • электролит возвращается в гидролизную ванну через трубу «Е».

Мембранные

Основная особенность устройств этого типа – использование твердого электролита (мембраны) на полимерной основе. С конструкцией приборов этого вида можно ознакомиться на рисунке 6.

Рис 6. Электролизер мембранного типа

Основная особенность таких устройств заключается в двойном назначении мембраны, она не только переносит протоны и ионы, а и на физическом уровне разделяет как электроды, так и продукты электрохимического процесса.

Диафрагменные

В тех случаях, когда не допустима диффузия продуктов электролиза между электродными камерами, используют пористую диафрагму (что и дало название таким приборам). Материалом для нее может служить керамика, асбест или стекло. В некоторых случаях для создания такой диафрагмы можно использовать полимерные волокна или стеклянную вату. На рисунке 7 показан простейший вариант диафрагменного прибора для электрохимических процессов.


Пояснение:

  1. Выход для кислорода.
  2. U-образная колба.
  3. Выход для водорода.
  4. Анод.
  5. Катод.
  6. Диафрагма.

Щелочные

Электрохимический процесс невозможен в дистиллированной воде, в качестве катализатора применяется концентрированный раствор щелочи (использование соли нежелательно, так как при этом выделяется хлор). Исходя из этого, щелочными можно назвать большую часть электрохимических устройств для расщепления воды.

На тематических форумах советуют использовать гидроксид натрия (NaOH), который, в отличие от пищевой соды (NaHCO 3), не разъедает электрод. Заметим, что у последней имеются два весомых преимущества:

  1. Можно использовать железные электроды.
  2. Не выделяются вредные вещества.

Но, один существенный недостаток сводит на нет все преимущества пищевой соды, как катализатора. Ее концентрация в воде не более 80 грамм на литр. Это снижает морозостойкость электролита и его проводимость тока. Если с первым еще можно смириться в теплое время года, то второе требует увеличения площади пластин электродов, что в свою очередь, увеличивает размер конструкции.

Электролизер для получения водорода: чертежи, схема

Рассмотрим, как можно сделать мощную газовую горелку, работающую от смеси водорода с кислородом. Схему такого устройства можно посмотреть на рисунке 8.


Рис. 8. Устройство водородной горелки

Пояснение:

  1. Сопло горелки.
  2. Резиновые трубки.
  3. Второй водяной затвор.
  4. Первый водяной затвор.
  5. Анод.
  6. Катод.
  7. Электроды.
  8. Ванна электролизера.

На рисунке 9 представлена принципиальная схема блока питания для электролизера нашей горелки.


Рис. 9. Блок питания электролизной горелки

На мощный выпрямитель нам понадобятся следующие детали:

  • Транзисторы: VT1 – МП26Б; VT2 – П308.
  • Тиристоры: VS1 – КУ202Н.
  • Диоды: VD1-VD4 – Д232; VD5 – Д226Б; VD6, VD7 – Д814Б.
  • Конденсаторы: 0,5 мкФ.
  • Переменные резисторы: R3 -22 кОм.
  • Резисторы: R1 – 30 кОм; R2 – 15 кОм; R4 – 800 Ом; R5 – 2,7 кОм; R6 – 3 кОм; R7 – 10 кОм.
  • PA1 – амперметр со шкалой измерения не менее 20 А.

Краткая инструкция по деталям к электролизеру.

Ванну можно сделать из старого аккумулятора. Пластины следует нарезать 150х150 мм из кровельного железа (толщина листа 0,5 мм). Для работы с вышеописанным блоком питания потребуется собрать электролизер на 81 ячейку. Чертеж, по которому выполняется монтаж, приведен на рисунке 10.

Рис. 10. Чертеж электролизера для водородной горелки

Заметим, что обслуживание такого устройства и управление им не вызывает трудностей.

Электролизер для автомобиля своими руками

В интернете можно найти много схем HHO систем, которые, если верить авторам, позволяют экономить от 30% до 50% топлива. Такие заявления слишком оптимистичны и, как правило, не подтверждаются никакими доказательствами. Упрощенная схема такой системы продемонстрирована на 11 рисунке.


Упрощенная схема электролизера для автомобиля

По идее, такое устройство должно снизить расход топлива за счет его полного выгорания. Для этого в воздушный фильтр топливной системы подается смесь Брауна. Это водород с кислородом, полученные из электролизера, запитанного от внутренней сети автомобиля, что повышает расход топлива. Замкнутый круг.

Безусловно, может быть задействована схема шим регулятора силы тока, использован более эффективный импульсный блок питания или другие хитрости, позволяющие снизить расход энергии. Иногда в интернете попадаются предложения приобрести низкоамперный БП для электролизера, что вообще является нонсенсом, поскольку производительность процесса напрямую зависит от силы тока.

Это как система Кузнецова, активатор воды которой утерян, а патент отсутствует и т.д. В приведенных видео, где рассказывают о неоспоримых преимуществах таких систем, практически нет аргументированных доводов. Это не значит, что идея не имеет прав на существование, но заявленная экономия «слегка» преувеличена.

Электролизер своими руками для отопления дома

Делать самодельный электролизер для отопления дома на данный момент не имеет смысла, поскольку стоимость водорода, полученного путем электролиза значительно дороже природного газа или других теплоносителей.

Также следует учитывать, что температуру горения водорода не выдержит никакой металл. Правда имеется решение, которое запатентовал Стен Мартин, позволяющее обойти эту проблему. Необходимо обратить внимание на ключевой момент, позволяющий отличить достойную идею от очевидного бреда. Разница между ними заключается в том, что на первый выдают патент, а второй находит своих сторонников в интернете.

На этом можно было бы и закончить статью о бытовых и промышленных электролизерах, но имеет смысл сделать небольшой обзор компаний, производящих эти устройства.

Обзор производителей электролизеров

Перечислим производителей, выпускающих топливные элементы на базе электролизеров, некоторые компании также выпускают и бытовые устройства: NEL Hydrogen (Норвегия, на рынке с 1927 года), Hydrogenics (Бельгия), Teledyne Inc (США), Уралхиммаш (Россия), РусАл (Россия, существенно усовершенствовали технологию Содерберга), РутТех (Россия).

Электролиз – химико-физическое явление по разложению веществ на компоненты посредством электротока, которое широко применяется в производственных целях. На основе этой реакции изготавливаются агрегаты для получения, например, хлора или цветных металлов.

Постоянный рост цен на энергетические ресурсы сделал популярными электролизные установки бытового назначения. Что представляют собой такие конструкции, и как их изготовить дома?

Общая информация об электролизере

Электролизная установка – устройство для электролиза, требующее внешний энергоисточник, конструктивно состоящее из нескольких электродов, которые помещены в заполненную электролитом емкость. Также такая установка может называться устройством для расщепления воды.

В подобных агрегатах основным техническим параметром является производительность, которая означает объем вырабатываемого водорода за час и измеряется в м³/ч. Стационарные агрегаты несут этот параметр в наименовании модели, например, мембранная установка СЭУ-40 вырабатывает за час 40 куб. м водорода.

Прочие характеристики таких устройств полностью зависят от целевого назначения и вида установок. Например, при осуществлении электролиза воды КПД агрегата зависит от нижеследующих параметров:

  1. Уровень наименьшего электродного потенциала (электронапряжения). Для нормального функционирования агрегата эта характеристика должна находиться в диапазоне 1,8-2 В на одну пластину. Если источник электропитания имеет напряжение в 14 В, то емкость электролизера с электролитным раствором имеет смысл разделить листами на 7 ячеек. Подобная установка называется сухим электролизером. Меньшее значение не запустит электролиз, а большее – сильно увеличит расход энергии;

  1. Чем меньше будет расстояние между пластиночными компонентами, тем меньше будет сопротивление, что при прохождении большого тока приведет к увеличению выработки газового вещества;
  2. Площадь поверхности пластин напрямую оказывает влияние на производительность;
  3. Тепловой баланс и степень концентрации электролита;
  4. Материал электродных элементов. Золото является дорогим, но идеальным материалом для применения в электролизерах. Из-за его дороговизны часто применяют нержавеющую сталь.

Важно! В конструкциях другого типа значения будут иметь иные параметры.

Установки для электролиза воды могут также использоваться для таких целей, как обеззараживание, очистка и оценка качества воды.

Принцип работы и виды электролизера

Самое простое устройство имеют электролизеры, которые расщепляют воду на кислород и водород. Они состоят из емкости с электролитом, в которую помещаются электроды, подключенные к энергоисточнику.

Принцип работы электролизной установки заключается в том, что электроток, который проходит через электролит, имеет напряжение, достаточное для разложения воды на молекулы. Результат процесса – анод выделяет одну часть кислорода, а катод производит две части водорода.

Виды электролизеров

Устройства для расщепления воды бывают нижеследующих видов:

  1. Сухие;
  2. Проточные;
  3. Мембранные;
  4. Диафрагменные;
  5. Щелочные.

Сухой тип

Такие электролизеры имеют самую простую конструкцию (картинка выше). Им присуща особенность, которая заключается в том, что манипуляция с числом ячеек дает возможность запитать агрегат от источника с любым напряжением.

Проточный тип

Эти установки имеют в своей конструкции полностью залитую электролитом ванну с электродными элементами и баком.

Принцип работы проточной электролизной установки нижеследующий (по картинке выше):

  • при протекании электролиза электролит вместе с газом через трубу «В» выдавливается в бак «D»;
  • в емкости «D» протекает процесс по отделению газа от электролита;
  • газ выходит через клапан «С»;
  • электролитный раствор возвращается через трубку «Е» в ванну «А».

Интересно знать. Такой принцип работы настроен в некоторых сварочных аппаратах – горение выделяемого газа позволяет сваривать элементы.

Мембранный тип

Электролизная установка мембранного типа имеет схожую конструкцию с другими электролизерами, однако в качестве электролита выступает твердое вещество на полимерной основе, которое именуется мембраной.

Мембрана в таких агрегатах имеет двойное назначение – перенос ионов и протонов, разделение электродов и продуктов электролиза.

Диафрагменный тип

Когда одно вещество не может проникать и влиять на другое, применяют пористую диафрагму, которая может изготавливаться из стекла, полимерных волокон, керамики либо асбестового материала.

Щелочной тип

Протекать электролиз в дистиллированной воде не может. В таких случаях необходимо использовать катализаторы, которыми выступают щелочные растворы высокой концентрации. Соответственно, основную часть электролизных устройств можно назвать щелочными.

Важно! Стоит отметить, что использование соли в качестве катализатора вредно, так как при протекании реакции выделяется газообразный хлор. Идеальным катализатором может выступать гидроксид натрия, который не разъедает железные электроды и не способствует выделению вредных веществ.

Самостоятельное изготовление электролизера

Изготовить электролизер своими руками может каждый человек. Для процесса сборки самой простой конструкции потребуются нижеследующие материалы:

  • лист нержавейки (идеальные варианты – зарубежная AISI 316L или отечественная 03Х16Н15М3);
  • болты М6х150;
  • шайбы и гайки;
  • прозрачная трубка – можно применять водяной уровень, который используется в строительных целях;
  • несколько штуцеров типа «елочка» с внешним диаметром 8 мм;
  • контейнер из пластика объемом 1,5 л;
  • небольшой фильтрующий проточную воду фильтр, например, фильтр для стиральных машин;
  • обратный водный клапан.

Процесс сборки

Собирать электролизер своими руками следует по следующей инструкции:

  1. Первым делом необходимо осуществить разметку и дальнейшую распилку листа нержавейки на равные квадраты. Распилка может осуществляться угловой шлифовальной машинкой (болгаркой). Один из уголков в таких квадратах должен быть спилен под углом для верного скрепления пластин;
  2. Далее потребуется просверлить отверстие для болта на противоположной от углового спила стороне пластины;
  3. Соединение пластин необходимо производить поочередно: одна пластина на «+», следующая на «-» и так далее;
  4. Между разно заряженными пластинами должен находиться изолятор, которым выступает трубка от водяного уровня. Ее необходимо разрезать на кольца, какие следует разрезать вдоль для получения полосок толщиной 1 мм. Такого расстояния между пластин достаточно для эффективного выделения газа при электролизе;
  5. Скрепление пластин вместе осуществляется посредством шайб следующим образом: на болт насаживается шайба, потом – пластина, далее – три шайбы, после – пластина и так далее. Пластины, положительно заряженные, располагаются зеркально отрицательно заряженных листов. Это позволяет не допустить задевание электродов спиленными краями;

  1. Собирая пластины, следует сразу выполнять их изоляцию и затяжку гаек;
  2. Также каждую пластину нужно прозвонить для того, чтобы убедиться в отсутствии короткого замыкания;
  3. Далее всю сборку требуется поместить в бокс из пластика;
  4. После этого надо отметить места касания болтов о стенки контейнера, где и просверлить два отверстия. Если болты не влезают в емкость, то их необходимо подрезать ножовкой;
  5. Далее болты затягиваются гайками и шайбами для герметичности конструкции;

  1. После проделанных манипуляций потребуется сделать отверстия в крышке контейнера и вставить в них штуцера. Герметичность в данном случае можно обеспечить посредством промазки швов герметиками на основе силикона;
  2. Защитный клапан и фильтр в конструкции располагаются на выходе газа и служат средством контроля чрезмерного его скопления, которое может привести к плачевным последствиям;
  3. Электролизная установка собрана.

Заключительный этап – тестирование, которое осуществляется таким образом:

  • заполнение водой емкости до уровня крепежных болтов;
  • подключение питания к прибору;
  • подключение к штуцеру трубки, противоположный конец которой опускается в воду.

Если будет подан на установку слабый ток, то выпускание газа через трубку будет почти незаметно, однако внутри электролизера его можно будет наблюдать. Повышая электрический ток, добавляя щелочной катализатор в воду, можно существенно увеличить выход газового вещества.

Изготовленный электролизер может выступать составной частью многих устройств, например, водородной горелки.

Зная типы, основные характеристики, устройство и принцип работы электролизных установок, можно осуществить правильную сборку самодельной конструкции, которые будет являться незаменимым помощником в различных бытовых ситуациях: от сварки и экономии расхода топлива автотранспорта до работы систем отопления.

Видео

Сущность электролизного технологического процесса (рис.), заключается в том, что при протекании электрического постоянного тока через электролитическую ванну может иметь место одно из явлений:

    Либо происходит осаждение частиц вещества из электролита на электродах ванны (электроэкстракция)

    Либо имеет место перенос вещества с одного электрода на другой через электролит (электролитическое рафинирование)

ЗАКЛАДКА

В качестве электролита используется растворы солей, кислот и оснований как правило в воде.

В электролите имеет место ионная проводимость. При подаче напряжения на электроды ионы движутся к электродам, нейтрализуются и оседают на них. При этом имеет место либо электроэкстракция либо электролитическое рафинирование.

Основное значение имеет при выборе понятие нормального потенциала.

Если электрод изготовлен из такого же металла как электролит, то при некотором потенциале между электродом и электролитом нет ни первого, ни второго процесса. Такой потенциал называется нормальный.

Если на электроды подать более отрицательный потенциал, то начинается электроэкстракция.

Если более положительный, то электролитическое рафинирование.

Электролиз применяют для получения или очистки металлов.

В количественном отношении электролизный процесс описывается тем же самым законом Фарадея.

U эл =E р +E п +U э +U с

E р - напряжение разложения

E п – сумма анодного и катодного ПН

U э – падение напряжения на электролите

U с – падение напряжения на шинах контактов электродов

U э =I∙R вн

U э =I∙(R ш +R к +R э)

P эл =I∙(E p +E п +U э +U с)

τ – время технологического процесса

E p – полезная работа

Эффективность электролизного процесса описывается массой вещества.

Сырьем для получения Znслужит цинковая обманкаZnS. Этот минерал сначала подвергают окислению, обжигу, а затем подвергают выщелачиванию.

ZnSO 4 +H 2 O(5÷6%) Проводимость у такого раствора невысока, поэтому добавляют к этому раствору 10÷12%H 2 SO 4

Электролитическая ванна выполнена из дерева или бетона и изолирована от земли.

Электролизный процесс проводится при t= 35÷40 0 C

j= 400÷600 А/м 2

На катоде появляется ПН – 1,1 В (нормальный потенциал -0,76 В)

Возникает электроэкстракция – осаждение Znна катоде.

1/g э = 3500 кВт∙ч/т

τ = 40÷50 часов

После этого Znсдирают с катода и переплавляют.

Получение Al

В качестве электролита используются не раствор, а расплав. В качестве сырья используется глинозем Al 2 O 3

t пл = 2050 0 С

Расплав этого материала имеет низкую проводимость. Поэтому в качестве электролита используют глинозем и криолит Na 3 AlF 6

t пл = 950 0 С

Ванны и электроды изготавливают из угля или графита.

I= 200÷250 кА

j= 7÷10 кА/м 2

1/g э = 14000÷16000 кВт∙ч/т

Гальванотехника

Это электротехнологический процесс осаждения металла на поверхность как металла, так и не металлических изделий с помощью электролиза.

Толщина покрытия не превышает десятков мкм.

Различают 2 разновидности:

    гальваностедия

    гальванопластика

Гальваностедия – омеднение, золочение, золочение, хромирование, никелирование…

Перед обработкой поверхность тщательно очищают, затем осуществляют травление кислотой H 2 SO 4 ,HCl. В качестве электролита используется раствор соли наносимого металла. Иногда добавляют кислоты и щелочи для повышения проводимости. Анод изготавливается из наносимого металла, изделие является катодом.

Происходит перенос металла с анода на катод, обработка происходит при небольших плотностях тока, не больше десятков А/м 2 .

Гальванопластика – получение точных копий с изделий.

Электродинамический эффект и электрический ветер

При воздействии ЭП на газовые и жидкие среды наблюдается их движение. Оно обусловлено передачей кинетической энергии при соударении ионов среды с нейтральными молекулами.

Это явление получило название электрический ветер для газовых сред.

Электрический ветер всегда направлен от электрода с меньшим радиусом кривизны.

Сила воздействия на электрический разряд оценивается просто:

F=E∙ρρ– плотность заряда

Установлены некоторые закономерности электрического ветра:


Импульсные установки

1.Установки электроэрозионной обработки.

2.Установки электрогидравлической обработки.

3.Установки электроимпульсной сварки.

4.Устновки магнитоимпульсной обработки металла.

5.Установки импульсной электрохимической обработки.

1.Установк электроэрозионной обработки.

Работа этих устройств основана на явлении электроэрозии,т.е разрушение обрабатываемого материала(Ме) под действием импульсов тока, протекающего между электродом обрабатываемой поверхностью, как правило в диэлектрической среде.

При протекании импульсов тока в искровом канале происходит превращение электроэнергии в тепло в искровом канале между электродам и поверхностью. Происходит нагрев, и его удаление.

Основные параметры обработки:

Частота следования импульсов от сотен до сотен тысяч Гц,

Амплитуда тока от долей до тысяч А,

Длительность импульсов от долей до нескольких тысяч секунд.

Изменением этих параметров устанавливается необходимый режим обработки. Схема1.

1-вертикальная стойка станка

2-рабочая ванна

3-стол для установки рабочей ванны, которая обеспечивает перемещение рабочей ванны по двум координатам в горизонтальной плоскости.

4-обратываемое электрод-изделие, располагающееся внутри рабочей ванны и перемещающейся вместе с ней.

5-устройство для вертикального перемещения.

6-источник высокого импульсного напряжения (периодическое, не ниже 1кВ).

7-система снабжения рабочей диэлектрической жидкостью(обычно трансформаторное масло). Система включает в себя насосы, фильтры, системы возврата жидкости, охладители.

8-электрод-инструмент, изготавливается из более тугоплавкого материала, чем электрод-изделие (вольфрам, графит).

Работа установки

Электрод-инструмент (8) подводится к поверхности изделия (4) и включается источник напряжения (6).

Т.е. к промежутку между электродом-инструментом (8), изделием (4) прикладываются импульсы высокого напряжения и в этом промежутке возникают электроискровые разряды. Эти каналы являются очень концентрированными преобразователями электрической энергии в тепловую с объемной плотностью 10^12 Дж/м3.

При этом плотность мощности 1-10^7 Вт/см2. Выделившаяся тепловая энергия приводит к нагреву, расплавлению, испарению металла изделия и его удаление с помощью рабочей жидкости. При этом многократные электрические разряды проходят послойно всю обрабатываемую поверхность. В итоге в изделии образуются углубления, которые копируют форму электрода.

В качестве источников питания используются импульсные источники питания на основе емкостных накопителей энергии.

Схема 2 .

Питание происходит от сети 220В с помощью трансформатора тока. Повышенное напряжение выпрямляется с помощью выпрямителя VD, выпрямленное напряжение используется для периодической загрузки батареи конденсатораCб. После зарядки этой емкости образуется разрядный контур, содержащий индуктивностьLpи рабочий искровой промежуток. Емкость разряжается, в разрядном контуре протекает токLp. После этого тиристорVDзапирается и процесс зарядки емкости Сб повторяется. Управление режимом обработки (шероховатость, производительность) производится путем измения мощности и частоты следования импульсов токаip.

Такие установки имеют высокую производительность и высокое качество обработки. При некоторых видах обработки такие установки незаменимы.

Недостаток: наблюдается износ электрода-инструмента.

Установки электрогидравлической обработки

Такие установки основаны на применении электрогидравлического эффекта.

Электрогидравлический эффект заключается в преобразовании электроэнергии, запасённой в ёмкостном накопителе в механическую энергию ударной волны при помощи мощного искрового разряда, который создаётся в жидкой среде (чаще воде).

Электрическая схема практически такая же как в предыдущем случае. Отличие в длине разрядного промежутка (она больше).

Параметры технологического процесса:

1)
- крутизна нарастающего тока;

2) до 250 кА;

3) до 100 МВт;

4) до
Дж.

При таких параметрах искровой канал имеет характер взрыва.

Температура канала
К; Давление
МПа.

Давление передаётся жидкости.

Области применения:

а) выбивка формовочных стержней в отливках сложной формы;

б) очистка литья и различных поверхностей от окалины;

в)дробление, измельчение различных материалов;

г) утилизация железобетонных изделий.

Установки импульсной сварки

Предназначены для получения неразъёмных сварных металлических соединений путём сжатия места соединения и нагревания его до температуры плавления путём пропускания импульсного тока.

Схема процесса такая же как и в предыдущем случае. Отличие только в нагрузке. Детали практически не нагреваются.

Преимущество – локализация термического воздействия, исключается разрушение мелких сварных деталей.

Устройства магнитно-импульсной обработки

Эти установки основаны на преобразовании ЭЭ в энергию импульсного МП, затем происходит взаимодействие импульсных полей, создаваемых инструментом – индуктором, с наведённым им Эл. Током в заготовке.

В результате энергия МП превращается в механическую энергию, которая необходимым образом деформирует заготовку.

ЗУ – зарядное устройство;

- батарея индуктивностей (создаёт импульс нужной формы);

ИН – инструмент индуктор;

З – заготовка.

Многоконтурные и одноконтурные установки

Многоконтурная установка содержит один или несколько инструментов – индукторов, выполненных в виде соленоидов.

МП соленоида, создаваемое током наводит в заготовке ток. Токи взаимодействуют и обеспечивают механические усилия и деформацию заготовки.

- собственная индуктивность ИИ;

- активное сопротивление ИИ;

- активное сопротивление;

- коэффициент взаимоиндукции;

- индуктивность и активное сопротивление заготовки.

В схеме прот. ПП, он определяется методом ТОЭ. Технология операции по такой схеме используется в 3 варианте:

2) раздача (индукция внутри заготовки);

3) листовая формовка (деформируется плоская заготовка).

Одноконтурная схема:

В этом случае разрядный ток протекает непосредственно через заготовку. Заготовка – часть ИИ.

разветвляется наи. Взаимодействие токов приводит к деформации заготовки, и она приобретает форму, показанную пунктиром.

Преимущества:


Недостатки:

    Материал должен иметь высокую электропроводность;

    Необходимость установки проводящих прокладок при образовании материалов, плохо проводящих эл. ток;

    Трудности обработки поверхностей, имеющих разрыв для эл. тока;

    Трудности с обработкой массивных заготовок.

Установки импульсной электрохимической обработки. Это рассмотренные выше электрохимические технологические процессы, в которых вместо постоянного напряжения применяется импульсное.

Электролиз - это расщипление или очищение веществ под воздействием электрического тока. Это окислительно-восстановительный процесс, на одном из электродов - аноде - происходит процесс окисления - он разрушается, а на катоде - процесс восстановления - к нему притягиваются положительные ионы - катионы. При электролизе проходит электролитическая диссоциация - распад электролита (токопроводящего вещества) на положительно и отрицательно заряженные ионы (выделяют несколько степеней диссоциации).При включении тока происходит движение электронов от анода к катоду, при этом раствор электролита может обедняться (если он учавствует в процессе), его нужно постоянно пополнять. Окисляющийся анод может также растворяться в растворе электролита - тогда его частицы приобретают положительный заряд и притягиваются к катоду.

Анод - положительно заряженный электрод - на нем идет окисление
Катод - отрицательно заряженный электрод - на нем идет восстановление
Исходя из принципа, что разноименые заряды притягиваются, вместе с этим идет разделение или очищение вещества.

Материал электродов может быть различным, в зависимости от проиходящего процесса. Масса вещества которое получается при электрохимическом взаимодействии, определяется законами Фарадея и зависит от заряда (произведение силы тока на время протекания тока), также зависит от концентрации электролита от активности материалов, из которых сделаны электроды. Аноды бывают инертные - нерастворимые, не вступают в реакции и активные - сами участвуют во взаимодействии (применяются гораздо реже).

Для изготовления анодов применяют графит, углеграфитовые материалы, платину и ее сплавы, свинец и его сплавы, окислы некоторых металлов; используются титановые аноды с активным покрытием из смеси окислов рутения и титана, а также платины и её сплавов.

Нерастворимые аноды - это композиции на основе тантала и титана специальные сорта графита, двуокись свинца, магнетит. Для катодов обычно используется сталь.

Для процесса могут быть использованы следующие типы электролитов: водные растворы солей, кислот, оснований; неводные растворы в органических и неорганических растворителях; расплавленные соли; твердые электролиты. Электролиты бывают различной степени концентрации.

В зависимости от целей электролитических реакций, используют различные сочетания типов анодов и катодов: горизонтальные с жидким ртутным катодом, с вертикальными катодами и фильтруюшей диафрагмой, с горизонтальной диафрагмой, с проточным электролитом, с движущимися электродами, с насыпными электродами и т.д. В большинстве процессов стремятся использовать вещества образующиеся и на аноде, и на катоде, однако обычно один из продуктов менее ценен.

Электролиз находит огромное применение в промышленности, также он используется в медицине и народном хозяйстве.

Основные применения электролиза:

  • Чистка воды для использования в народном хозяйстве,
  • Очистка сточных вод использованных вод с химических производств.

Для получения веществ и металлов без примесей:

  • Металлургия, гидрометаллургия - для производства алюминия и многих других металлов - алюминия из расплава оксида алюминия в криолите, электролизом получают магний (из доломита и морской воды), натрий (из каменной соли), литий, бериллий, кальций (из хлорида кальция), щелочные и редкоземельных металлы.
  • В химической промышленности электролизом получают такие важные продукты как хлораты и перхлораты, надсерную кислоту и персульфаты, перманганат калия,
  • Электролитическое выделение металла - электроэкстракция. Руда или концентрат определенными реагентами переводится в раствор, который после очистки направляют на электролиз. Так получают цинк, медь, кадмий.
  • Электролитическое рафинирование. Из металла изготавливают растворимые аноды, примеси, содержащиеся в черновом металле анода выпадают в виде анодного шлама (медь, никель, олово, свинец, серебро, золото), при электролизе, а чистый металл выделяется на катоде.
  • В гальванотехники - гальваностегия - получение покрытий но металлах, улучшающие их эксплуатационные или декоративные свойства и гальванопластика - получение точных металлических копий любых предметов;
  • Для получения оксидных защитных пленок на металлах (анодирование); также электрохимическая обработка используется для полировки поверхности изделий и окрашивания металлов,
  • Существует электрохимическая заточка режущих инструментов, электрополирование, электрофрезирование,
  • также электролиз широко применяется в радиотехнике.

Выделяют электролиз водных растворов и расплавленных сред, а также производство самих электрохимических источников тока - батарей, гальванических элементов, аккумуляторов работоспособность которых восстанавливается пропусканием тока в направлении, противоположном тому, в котором ток протекал при разрядке.

Основные типы электролизных установок:

  • Установки для получения и рафинирования алюминия;
  • Электролизные установки ферросправного производства;
  • Электролизеры никель-кобальтового производства;
  • Установки для электролиза магния;
  • Установки электролиза (рафинирования) меди;
  • Установки для нанесения гальванических покрытий;
  • Электролизные установки получения хлора;
  • Электролизеры для обеззараживания воды.
  • Электролизеры, производящие водород для атомных станций.. и т.п.

Побочным продуктов многих окислительно-восстановительных реакций является кислород.

При электролизе регулируют силу тока, его частоту и напряжение, даже полярность, эти параметры управляют скоростью и направленностью процессов. Реакция электролиза всегда проводится при постоянном токе, так как здесь очень важно постояноство полюсов. В очень редких случаях, когда полярность не значима используется переменный ток (например, при электролизе газов).

Современные алюминиевые электролизеры по конструкции катодного устройства подразделяют на

  • Электролизеры с днищем и без днища,
  • С набивной и блочной подиной;
  • по способу токоподвода: с односторонней и двусторонней схемой ошиновки;
  • по способу улавливания газов: на электролизеры открытого типа, с колокольным газоотсосом и укрытого типа.

К неудовлетворительным свойствам всех существующих конструкций алюминиевых электролизеров следует отнести недостаточно высокий коэффициент использования электроэнергии, непродолжительный срок их службы и недостаточную эффективность улавливания отходящих газов. Дальнейшее совершенствование конструкции электролизеров должно идти по пути увеличения его единичной мощности, механизации и автоматизации всех операций обслуживания, полного улавливания всех отходящих газов с последующей регенерацией их ценных компонентов.

Промышленные электролизные установки имеют множество типов конструкции, основные это мембранные и диафрагменные. Также выделяют сухие, мокрые и проточные электролизные установки. В общем виде установка - это закрытая система, содержащая электроды, помещенные в состав электролита, к которой подводится электрический ток с определенными характеристиками. Электролизные ячейки могут быть объединены в батарею. Существуют также биполярные электролизеры - где каждый электрод, за исключением крайних работает с одной стороны как анод, с другой стороны как катод.

Данное оборудование работает при различном давлении, в зависимости от типа реакции. Для получения некоторых веществ - например, при получении газов требуется регулировка давления или особые условия. Также нужно следить за давлением газов, которые являются побочным продуктом электролитических реакций. Электролизные установки, которые используются для получения водородв и кислорода на электростанциях работают под избыточным давлением до 10 кгс/см2 (1 МПа).
Установки также отличаются своей производительностью.

В некоторых их них используются прямоходные электрические механизмы . Например, они применяются для перемещения электродов, регулирования уровня электролита, перемещения резервуаров, ванн с электролитом и т.п . Один из примеров такой конструкции приведен на чертеже.

Все электролизные установки должны быть заземлены. Для работы большого промышленного электролизера нужен выпрямительный агрегат или преобразовательная подстанция для преобразования переменного тока в постоянный. Стационарное местное освещение в цехах (корпусах, залах) электролиза обычно не требуется. Исключение - основные производственные помещения электролизных установок получения хлора.

Технологии промышленного электролиза подразделяются на несколько типов:

  • PFPB - технология электролиза с использованием обожженных анодов и точечных питателей
  • CWPB - электролиз с использованием обожженных анодов и балки продавливания по центру
  • SWPB - периферийная обработка электролизеров с обожженными анодами
  • VSS - технология Содерберга с верхним токоподводом
  • HSS - технология Содерберга с боковым токоподводом

Наибольший объем удельных выбросов из электролизеров приходится на процессы электролиза, в основе которых лежит технология Содерберга. Данная технология получила наибольшее распространение на алюминиевых заводах России и Китая. Объем удельных выбросов из таких электролизерах значительно выше относительно других технологий. Количество выбросов фторуглеродов сокращают в том числе и изучая технологические параметры анодного эффекта, снижение которого также влияет на количество выбросов.

Модели промышленных электролизеров



У углеродных анодов (а графит - это аллотоп углерода) - есть существенный недостаток - при проведении реакции они выбрасывают в атмосферу углекислый газ, тем самым загрязняя ее. В настоящее время особенно актуальна технология инертного анода, сейчас данную технологию тестирует известный производитель алюминия. Суть ее в том, что для используется не вступающий в реакции безуглеродный анод, и как побочный продукт в атмосферу выделяется не углекислый газ, а чистый кислород.

Данная технология существенно повышает экологичность производства, но пока она находится на этапе тестирования.

Несмотря на большое разнообразие электролитов, электродов, электролизеров, имеются общие проблемы технического электролиза. К ним следует отнести перенос зарядов, тепла, массы, распределение электрических полей. Для ускорения процесса переноса целесообразно увеличивать скорости всех потоков и применять принудительную конвекцию. Электродные процессы могут контролироваться путем измерения предельных токов.