11.07.2023

Феррожидкость — что это и как сделать ферромагнитную жидкость самому. Магнитная жидкость Ферромагнитная жидкость как сделать самому


Текст работы размещён без изображений и формул.
Полная версия работы доступна во вкладке "Файлы работы" в формате PDF

ВВЕДЕНИЕ

Цель: приготовить ферромагнитную жидкость и изучить её свойства.

Задачи:

Узнать о ферромагнитной жидкости (вид неньютоновской жидкости ).

Приготовить ферромагнитную жидкость.

Провести эксперименты для изучения её свойств.

Узнать её применение.

Сделать выводы.

Представить результаты.

Гипотеза: в домашних условиях можно приготовить ферромагнитную жидкость и изучить ее свойства.

Область применения результатов: участие в научно-исследовательских конкурсах

Актуальность: Магнетизм - это физическое явление, при котором материалы оказывают притягивающую или отталкивающую силу на другие материалы на расстоянии. Планета Земля имеет два магнитных полюса и собственное магнитное поле. Магниты - важная часть нашей повседневной жизни. Магниты являются существенными компонентами таких устройств, как электрические двигатели, динамики, компьютеры, проигрыватели компакт-дисков, микроволновые печи и, конечно, автомобили. Магниты используются в датчиках, приборах, производственном оборудовании, научных исследованиях. Ферромагнитная жидкость - один из видов неньютоновской жидкости. Это искусственно созданная жидкость. Эта жидкость меняет свойства при определенных условиях которыми может управлять человек.

ОСНОВНАЯ ЧАСТЬ

2.1 Теоретическая часть

Магнитные жидкости - это уникальный технологический искусственно синтезированный материал, обладающий жидкотекучими и магнитоуправляемыми свойствами.

В 1963 году сотрудник NASA Стив Папелл изобрел ферромагнитную жидкость. Он решал вполне определенную задачу: как в условиях невесомости заставить жидкость в топливном баке ракеты подходить к отверстию, из которого насос перекачивал топливо в камеру сгорания. Тогда-то Папелл и придумал нетривиальное решение — добавлять в топливо какую-нибудь магнитную субстанцию, чтобы с помощью внешнего магнита управлять перемещением топлива в баке. Так на свет появилась ферромагнитная жидкость.

Минимальный состав ферромагнитой жидкости: ферромагнетик (например, мелкие частицы магнитного металла) и растворитель (например, различные масла). Но такая жидкость будет оседать. Чтобы этого не происходило, необходимо добавить модификатор поверхности (вещество, которое не даёт ферромагнетику слипаться, например лимонная кислота). Ферромагнитные жидкости изучает раздел науки коллоидная химия.

Магнитная жидкость обладает всеми преимуществами жидкого материала - малым коэффициентом трения в контакте с твердым телом, возможностью проникать в микрообъемы, способностью смачивать практически любые поверхности и др. В то же время, магнитоуправляемость магнитной жидкости позволяет удерживать её в нужном месте устройства под действием магнитного поля.

2.2 Практическая часть:

В практической части работы я пробовал сделать ферромагнитную жидкость и посмотреть как она изменяется в присутствии магнита.

2.2.1 Материалы и инструменты:

Тонер-порошок, девелопер, железная стружка, магнитный порошок;

Машинное масло, подсолнечное масло;

Лимонная кислота;

Неодимовые магниты: из обычного жесткого диска для компьютера, из звукового динамика, приобретенный в специализированном магазине неодимовое магнит-кольцо;

Флакон, воронка, разные поверхности, полиэтиленовый пакет, перчатки, палочка;

Блокнот для записей, ручка, фотоаппарат, ноутбук.

2. 2.2 Опыт № 1 Получение ферромагнитной жидкости из тонер-порошка и машинного масла

В глобальной сети Интернет есть множество сайтов, на которых описан способ получения ферромагнитной жидкости из тонер-порошка и машинного масла в пропорции одна третья тонер порошка, остальное машинное масло. Я взял тонер-порошок для лазерных принтеров brother и машинное масло. Смешал в пластиковой бутылке. После смешивания, я поднес магнит и ничего не произошло. Жидкость получилась, но она не обладала магнитными свойствами. Если бы жидкость обладала магнитными свойствами, она бы затвердела и изменила свою форму при движении магнита. Опыт завершился неудачей.

2.2.3 Опыт № 2 Получение ферромагнитной жидкости из тонер-порошка, девелопера и машинного масла

Из первого опыта я сделал вывод о том, что используемый тонер не является ферромагнетиком. В современных лазерных принтерах для намагничивания краски используется девелопер - специальный магнитный порошок. В получившуюся в первом опыте жидкость я добавил треть объема девелопера. Когда я поднес магнит, жидкость образовала почти незаметный холмик и не затвердела. Получилась жидкость со слабыми ферромагнитными свойствами. Опыт завершился неудачей.

2.2.4 Опыт № 3 Получение ферромагнитной жидкости из железной стружки и машинного масла

После первых двух неудавшихся опытов, я задумался о силе магнита. С помощью которого проверяю наличие магнитных свойств. Для проверки жидкости я использовал два магнита: магнит от звукового динамика и неодимовый магнит из уже не работающего жестко диска для компьютера (HDD). Для того чтобы убедится, что ферромагнитная жидкость не получается из за свойств ферромагнетика в жидкости, а не магнита я добавил в получившийся раствор обычные железные опилки (отходы от работы на слесарном станке ). Магнит притянул к стенке все железные элементы жидкости! Магнитные свойства появились, но все то что я смешал уже сложно назвать жидкостью. Опыт снова завершился неудачей.

2.2.5 Опыт № 4 Получение ферромагнитной жидкости из магнитного порошка и подсолнечного масла

Итак, для получения ферромагнитной жидкости нужен хороший ферромагнетик! В специализированном магазине Мир магнитов я приобрел специальный железный магнитный порошок для опытов.

2.2.6 Опыт № 5 Получение ферромагнитной жидкости из магнитного порошка, лимонной кислоты и подсолнечного масла.

Для того чтобы ферромагнитная жидкость не расслаивалась в нее добавляют ПАВ (поверхностно активное вещество). В качестве ПАВ я выбрал лимонную кислоту.

2.2.7 Опыт № 6 Изучение свойств феррмагнитной жидкости. Магнитоуправляемость.

Для изучения свойств полученной жидкости я использовал неодимовый магнит.

Магниты и инструментарий

Когда я поднес магнит к стенке пузырька с ферромагнитной жидкость часть жидкости примагнитилас к стенке, затвердела и изменила свою форму (см. фото)

Когда я положил магнит на дно и перевернул пузырек, все его содержимое стало твердым и не стекало сверху вниз.

Когда я убрал магнит, твердая вещество стало превращаться в жидкость и стекло сверху вниз

С помощью пипетки я перелил часть ферромагнитной жидкости на пластиковый диск

Обратите внимание - это жидкость!!!

Вот что произошло с жидкостью на которую воздействует магнит. Форма похожа на иголки ежика.

При перемещении магнита часть твердой жидкости переместилась вместе с ним, оставшаяся стала принимать жидкую форму.

Моя младшая сестра захотела сделать ферромагнитного котика у которого может пониматься шерсть дыбом.

На фанерке, оклеенной фольгой, с помощью пластилина я сделал очертания кота и заполнил его с помощью пипетки моей ферромагнитной жидкостью

Вот что получилось при поднесении магнита снизу

…хвост дыбом…

Мой ферромагнитный ежик

Исследуем…..

2.2.8 Опыт № 7 Изучение свойств феррмагнитной жидкости. Способность проникать в микрообъемы (закупорка отверстия )

В последнем эксперименте я пытался понять, как можно с помощью внешнего магнита закрывать отверстия от течи. Для этого я сначала налил мою жидкость в пластмассовую колбу с большим отверстием внизу. Потом поднес магнит к стенке рядом с отверстием и поднял колбу. Затвердевшая под действием магнита жидкость препятствовала вытеканию остальной жидкой части. Как только я убрал магнит, все вытекло из колбы.

2.3 Практическое применение

Применение ферромагнитных жидкостей:

  1. На основе ферромагнитной жидкости делают радиопоглощающие покрытия на самолеты.
  2. Создатели знаменитого Ferrari используют магнитореологическую жидкость в подвеске автомобиля: манипулируя магнитом, водитель может сделать подвеску в любой момент более жесткой или более мягкой.
  3. Ферромагнитная жидкость используются в некоторых высокочастотных динамиках для отвода тепла от звуковой катушки. Одновременно она работает механическим глушителем, подавляя нежелательный резонанс. Ферромагнитная жидкость удерживается в зазоре вокруг звуковой катушки сильным магнитным полем, находясь одновременно в контакте с обеими магнитными поверхностями и с катушкой
  4. Ферромагнитные жидкости имеют множество применений в оптике благодаря их преломляющим свойствам. Среди этих применений измерение удельной вязкости жидкости, помещенной между поляризатором и анализатором, освещаемой гелий-неоновым лазером.
  5. В качестве рабочего тела в датчиках угла наклона и акселерометрах.
  6. В магнитных сепараторах для разделения и сепарации материалов с различной плотностью. Магнитная жидкость обладает еще одним удивительным, поистине уникальным свойством. В ней, как и в любой жидкости, плавают тела менее плотные и тонут тела более плотные, чем она сама. Но если приложить к ней магнитное поле, то утонувшие тела начинают всплывать. Причем чем сильнее поле, тем более тяжелые тела поднимаются на поверхность. Прикладывая различное по напряженности магнитное поле, можно заставлять всплывать тела с какой-то заданной плотностью. Это свойство магнитной жидкости применяют сейчас для обогащения руды. Ее топят в магнитной жидкости, а затем нарастающим магнитным полем заставляют всплывать сначала пустую породу, а затем уже и тяжелые куски руды. Например, для разделения золота и шлиха.
  7. Для очистки водных поверхностей от нефтепродуктов при аварийных разливах и катастрофах.
  8. Печатающие и чертежные устройства. Есть печатающие и чертежные устройства, работающие на магнитной жидкости. В краску вносится немного магнитной жидкости, и такая краска выбрызгивается тонкой струйкой на протягиваемую перед ней бумагу. Если струю ничем не отклонять, то будет начерчена линия. Но на пути струйки поставлены электромагниты, подобно отклоняющим электромагнитам кинескопа телевизора. Роль потока электронов здесь играет тонкая струйка краски с магнитной жидкостью - ее-то и отклоняют электромагниты, и на бумаге остаются буквы, графики, рисунки.

3. ЗАКЛЮЧЕНИЕ

Выводы

  1. В домашних условиях можно приготовить ферромагнитную жидкость и изучить ее свойства.
  2. Успех опытов зависит от силы магнита и качества ферромагнетика. В случае применения тонер-порошка или девелопера для принтера надо быть уверенным, что он содержит магнитный порошок.
  3. С помощью магнита можно увидеть некоторые свойства ферромагнитной жидкости и понять как работают разные механизмы.

СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ И ЛИТЕРАТУРЫ

  1. Как сделать ферромагнитную жидкость дома? Викторова Л.
  2. («НиЖ», 2015, №12) https://www.hij.ru/read/issues/2015/december/5750/
  3. МАГНИТНАЯ ЖИДКОСТЬ, И. Сенатская, кандидат химических наук Ф. Байбуртский https://www.nkj.ru/archive/articles/4971/ (Наука и жизнь, МАГНИТНАЯ ЖИДКОСТЬ)
  4. Ферромагнитная жидкость https://ru.wikipedia.org/wiki/%D0%A4%D0%B5%D1%80%D1%80%D0%BE%D0%BC%D0%B0%D0%B3%D0%BD%D0%B8%D1%82%D0%BD%D0%B0%D1%8F_%D0%B6%D0%B8%D0%B4%D0%BA%D0%BE%D1%81%D1%82%D1%8C
  5. Феррожидкость — что это и как сделать ферромагнитную жидкость самому http://www.sciencedebate2008.com/ferrofluid/

(ПАВ), образующим защитную оболочку вокруг частиц и препятствующем их слипанию из-за Ван-дер-Ваальсовых или магнитных сил.

Несмотря на название, ферромагнитные жидкости не проявляют ферромагнитных свойств, поскольку не сохраняют остаточной намагниченности после исчезновения внешнего магнитного поля. На самом деле [ ] ферромагнитные жидкости являются парамагнетиками и их часто называют «суперпарамагнетиками» из-за высокой магнитной восприимчивости . Действительно ферромагнитные жидкости в настоящее время создать сложно. [ ]

Энциклопедичный YouTube

    1 / 4

    ✪ Ферромагнитная жидкость/Ferrofluid

    ✪ Как сделать ФЕРРОМАГНИТНУЮ ЖИДКОСТЬ ИЗ БЕНГАЛЬСКИХ ОГНЕЙ!Ферромагнитная жидкость!How make ferrofluid

    ✪ МАГНИТНАЯ ЖИДКОСТЬ СВОИМИ РУКАМИ MAGNETIC FLUID LIQUID METAL ferrofluid ИГОРЬ БЕЛЕЦКИЙ

    ✪ Как сделать МАГНИТНУЮ ЖИДКОСТЬ

    Субтитры

Описание

Ферромагнитные жидкости состоят из частиц нанометровых размеров (обычный размер 10 нм или меньше) магнетита , гематита или другого материала, содержащего железо , взвешенных в несущей жидкости. Они достаточно малы, чтобы тепловое движение распределило их равномерно по несущей жидкости, чтобы они давали вклад в реакцию жидкости в целом на магнитное поле. Аналогичным образом ионы в водных растворах парамагнитных солей (например, водный раствор сульфата меди(II) или хлорида марганца(II)) придают раствору парамагнитные свойства.

Ферромагнитные жидкости это коллоидные растворы - вещества, обладающие свойствами более чем одного состояния материи. В данном случае два состояния это твердый металл и жидкость , в которой он содержится. Эта способность изменять состояние под воздействием магнитного поля позволяет использовать ферромагнитные жидкости в качестве уплотнителей , смазки , а также может открыть другие применения в будущих наноэлектромеханических системах.

Ферромагнитные жидкости устойчивы: их твердые частицы не слипаются и не выделяются в отдельную фазу даже в очень сильном магнитном поле. Тем не менее, ПАВ в составе жидкости имеют свойство распадаться со временем (примерно несколько лет), и в конце концов частицы слипнутся, выделятся из жидкости и перестанут влиять на реакцию жидкости на магнитное поле. Также ферромагнитные жидкости теряют свои магнитные свойства при своей температуре Кюри , которая для них зависит от конкретного материала ферромагнитных частиц, ПАВ и несущей жидкости.

Термин «магнитореологическая жидкость» относится к жидкостям, которые подобно ферромагнитным жидкостям затвердевают в присутствии магнитного поля. Разница между ферромагнитной жидкостью и магнитореологической жидкостью в размере частиц. Частицы в ферромагнитной жидкости это в основном частицы нанометровых размеров, находящиеся во взвешенном состоянии из-за броуновского движения и не оседающие в нормальных условиях. Частицы в магнитореологической жидкости в основном микрометрового размера (на 1-3 порядка больше); они слишком тяжелы, чтобы броуновское движение поддерживало их во взвешенном состоянии, и поэтому со временем оседают из-за естественной разности в плотности частиц и несущей жидкости. Как следствие, у этих двух типов жидкостей разные области применения.

Нестабильность в нормально направленном поле

Под воздействием довольно сильного вертикально направленного магнитного поля поверхность жидкости с парамагнитными свойствами самопроизвольно формирует регулярную структуру из складок. Этот эффект известен как «нестабильность в нормально направленном поле ». Формирование складок увеличивает свободную энергию поверхности и гравитационную энергию жидкости, но уменьшает энергию магнитного поля. Такая конфигурация возникает только при превышении критического значения магнитного поля, когда уменьшение его энергии превосходит вклад от увеличения свободной энергии поверхности и гравитационной энергии жидкости. У ферромагнитных жидкостей очень высокая магнитная восприимчивость , и для критического магнитного поля, чтобы возникли складки на поверхности, может быть достаточно маленького стержневого магнита.

Типичные поверхностно-активные вещества для ферромагнитных жидкостей

Чтобы обволакивать частицы в ферромагнитной жидкости используются, в частности, следующие ПАВ :

  • полиакрилат натрия

ПАВ препятствуют слипанию частиц, мешая им образовать слишком тяжелые кластеры , которые не смогут удерживаться во взвешенном состоянии за счет броуновского движения. В идеальной ферромагнитной жидкости магнитные частицы не оседают даже в очень сильном магнитном или гравитационном поле. Молекулы ПАВ имеют полярную «головку» и неполярный «хвост» (или наоборот); один из концов адсорбируется к частице, а другой прикрепляется к молекулам жидкости-носителя, образуя, соответственно, обычную или обратную мицеллу вокруг частицы. В результате пространственные эффекты препятствуют слипанию частиц. Полиакриловая, лимонная кислоты и их соли формируют на поверхности частиц двойной электрический слой в результате адсорбции полианионов, что приводит к возникновению кулоновских сил отталкивания между частицами, повышающей стабильность жидкости на водной основе.

Хотя ПАВ полезны для того, чтобы продлить время осаждения частиц в ферромагнитной жидкости, они оказываются вредны для её магнитных свойств (в особенности, для магнитного насыщения жидкости). Добавление ПАВ (или других посторонних веществ) уменьшает плотность упаковки ферромагнитных частиц в активированном состоянии жидкости, тем самым уменьшая её вязкость в этом состоянии, давая более «мягкую» активированную жидкость. И хотя для некоторых применений вязкость ферромагнитной жидкости в активированном состоянии (так сказать, её «твердость») не очень важна, для большинства коммерческих и промышленных форм применения это самое главное свойство жидкости, поэтому необходим определённый компромисс между вязкостью в активированном состоянии и скоростью осаждения частиц. Исключение составляют ПАВ на основе полиэлектролитов , позволяющие получить высококонцентрированные жидкости с малой вязкостью.

Применение

Электронные устройства

Ферромагнитная жидкость используются в некоторых высокочастотных динамиках для отвода тепла от звуковой катушки. Одновременно она работает механическим демпфером , подавляя нежелательный резонанс . Ферромагнитная жидкость удерживается в зазоре вокруг звуковой катушки сильным магнитным полем, находясь одновременно в контакте с обеими магнитными поверхностями и с катушкой.

Машиностроение

Ферромагнитная жидкость способна снижать трение . Нанесенная на поверхность достаточно сильного магнита, например неодимового , она позволяет магниту скользить по гладкой поверхности с минимальным сопротивлением.

Оборонная промышленность

Авиакосмическая промышленность

Медицина

Ведется много экспериментов по использованию ферромагнитных жидкостей для удаления опухолей .

Теплопередача

Если воздействовать магнитным полем на ферромагнитную жидкость с разной восприимчивостью (например, из-за температурного градиента) возникает неоднородная магнитная объемная сила, что приводит к форме теплопередачи называемой термомагнитная конвекция. Такая форма теплопередачи может использоваться там, где не годится обычная конвекция , например, в микроустройствах или в условиях пониженной гравитации .

Уже упоминалось использование ферромагнитной жидкости для отвода тепла в динамиках. Жидкость занимает зазор вокруг звуковой катушки, удерживаясь магнитным полем. Поскольку ферромагнитные жидкости обладают парамагнитными свойствами, они подчиняются закону Кюри - Вейса , становясь менее магнитными при повышении температуры. Сильный магнит, расположенный рядом со звуковой катушкой, которая выделяет тепло, притягивает холодную жидкость сильнее, чем горячую, увлекая горячую жидкость от катушки к кулеру . Это эффективный метод охлаждения, который не требует дополнительных затрат энергии.

Генераторы

Замороженная или полимеризованная ферромагнитная жидкость, находящаяся в совокупности постоянного (подмагничивающего) и переменного магнитных полей, может служить источником упругих колебаний с частотой переменного поля, что может быть использовано для генерации ультразвука .

Горнорудная промышленность

Ферромагнитная жидкость может быть использована в составе магнитножидкостного сепаратора для очистки от

Под термином «магнитная жидкость» обычно подразумевается жидкость, притягиваемая магнитом, то есть реагирующая на магнитное поле. Более того, в сильных магнитных полях эта жидкость может утратить текучесть, став подобной твёрдому телу. Многие слышали о таких веществах, но большинство считают такие вещества экзотическим и дорогим продуктом высоких технологий, доступным лишь избранным счастливчикам. Это справедливо, но лишь отчасти. Иногда вполне достаточно менее качественного, но зато более чем доступного продукта, сделанного за несколько минут буквально из мусора.

Магнитная жидкость своими руками

Изготовление магнитной жидкости химическим путём

Для этого необходимо иметь следующее оборудование и химическую посуду.

  1. Аптечные весы с набором разновесов.
  2. Две колбы (с круглым или плоским дном).
  3. Химический стакан.
  4. Фильтровальную бумагу и воронку.
  5. Достаточно сильный магнит, желательно кольцевой (из динамика).
  6. Небольшую (лабораторную) электроплитку.
  7. Фарфоровый стаканчик на 150–200 мл.
  8. Термометр с диапазоном измерения температуры до 100°С.
  9. Индикаторную бумагу.
  10. Для получения более качественной магнитной жидкости потребуется маленькая настольная центрифуга (на 4000 об/мин). Впрочем, при умеренных требованиях к конечному продукту можно обойтись и без центрифугирования или попытаться заменить центрифугирование длительным отстаиванием.

Кроме того, необходимы следующие реагенты.

  1. Соли двух- и трёхвалентного железа (хлорные FeCl 2 , FeCl 3 или сернокислые FeSO 4 , Fe 2 (SO 4) 3).
  2. Аммиачная вода 25%-ной концентрации (нашатырный спирт).
  3. Натриевая соль олеиновой кислоты (олеиновое мыло) в качестве ПАВ. Можно попытаться заменить олеиновую кислоту моющими средствами с низким пенообразованием.
  4. Дистиллированная вода. Вместо дистиллированной воды можно использовать воду, прошедшую очистку через систему обратного осмоса (в том числе бытовую, но при условии, что в этой системе нет «улучшающего» пост-картриджа, обогащающего уже очищенную воду солями и микроэлементами). Очищенная питьевая вода в бутылках из магазина не подойдёт - она обычно «улучшена» разными микродобавками; по тем же причинам не годится природная родниковая и артезианская вода.

Вот краткое изложение этой методики. Цифры приведены в расчёте на 10 граммов твёрдой магнитной фазы (магнетита) в магнитной жидкости.

1. Растворите в 500 мл дистиллированной воды (можно при слабом подогреве и несильном помешивании) 24 грамма трехвалентной соли железа (хлорного или сернокислого) и 12 граммов двухвалентной соли железа (хлористого или сернокислого).
2. Полученный раствор отфильтруйте на воронке в другую колбу через фильтровальную бумагу для отделения механических примесей.
3. В первую колбу, предварительно промыв её водой, залейте (осторожно!) около 100–150 мл аммиачной воды (работу лучше проводить под тягой или на открытом воздухе).
4. Очень осторожно, тонкой струёй вливайте из второй колбы отфильтрованный раствор в первую, содержащую аммиачную воду, и интенсивно взбалтывайте её.
Коричневато-оранжевый раствор мгновенно превратится в суспензию чёрного цвета. Долейте немного дистиллированной воды и поставьте колбу с образовавшейся смесью на постоянный магнит на полчаса.
5. После того, как образовавшиеся частицы магнетита в виде «дождя» под действием сил магнитного поля выпадут на дно колбы, осторожно слейте около двух третей раствора в канализацию, удерживая осадок магнитом, и снова залейте в колбу дистиллированную воду. Хорошенько её взболтайте и опять поставьте на магнит. Операцию повторяйте до тех пор, пока pH раствора не достигнет 7.5–8.5 (нежно-зелёная окраска индикаторной бумаги фирмы «Лахема» при смачивании её промывным раствором).
6. После того, как последний промывной раствор на две трети слит, загущённую суспензию отфильтруйте через бумажный фильтр на воронке и полученный осадок чёрного цвета смешайте с 7.5 грамма натриевой соли олеиновой кислоты.
7. Смесь поместите в фарфоровый стаканчик и, хорошо перемешивая, прогрейте до 80°С на электрической плитке в течение часа.
8. Полученную «патоку» чёрного цвета охладите до комнатной температуры. Долейте 50–60 мл дистиллированной воды и тщательно размешайте получившуюся коллоидную систему.
9. Разведённую водой «патоку» подвергните центрифугированию при 4000 об/мин в течение одного часа или ещё раз поставьте стаканчик с ней на кольцевой магнит. Можно попытаться заменить центрифугирование отстаиванием в прохладном месте в течение нескольких суток, однако в этом случае колба должна быть действительно неподвижна (скажем, проходящие неподалёку трамвайные пути делают длительное отстаивание бессмысленным, то же относится и к полам в обычных многоэтажных домах, не обладающим нужной жёсткостью и массивностью).
10. Перелейте полученную магнитную жидкость в химический стакан и поднесите снаружи магнит. Жидкость потянется за ним. После того, как Вы уберёте магнит, на стекле останется след от жидкости. Он должен иметь коричневато-оранжевую окраску и не содержать посторонних частиц.
11. Хранить водную магнитную жидкость желательно в светонепроницаемой таре в прохладном месте.

Прежде чем приступать к изготовлению, советую посмотреть страничку http://wsyachina.narod.ru/technology/magnetic_liquid.html , там описана эта же методика, а в конце автор странички делится своим опытом. В частности, в качестве ПАВ он использовал самую обычную «Fairy» (жидкость для мытья посуды). Главное - обратите особое внимание на рекомендации по безопасности и соблюдайте необходимую осторожность!

Изготовление магнитной жидкости механическим способом

Между тем, изготовить вполне приемлемую для некоторых применений жидкость, реагирующую на магнитное поле, по силам практически каждому - без каких-либо реактивов и всего за несколько минут. Ещё раз подчеркну - лишь для некоторых применений, и качество её существенно хуже, чем у полученной химическим путём. В частности, консистенция продукта получается такой, что его скорее можно назвать не «жидкостью», а «жижей». Да и время осаждения магнитных частиц достаточно мало - обычно от нескольких секунд до нескольких минут. Зато никакой химии и экзотических технологий - лишь просеивание и смешивание. Кстати, когда магнитными жидкостями впервые заинтересовались в середине XX века, то их самые первые образцы как раз и были получены примерно таким путём.

Для того, чтобы сделать такую «магнитную жижу», требуется всего лишь набрать необходимое количество мелких стальных опилок. Чем мельче, тем лучше, поэтому наиболее подходящей является стальная пыль, остающаяся после работы «болгарки» или точила. Пыль собирается магнитом (не слишком сильным - не столько для предотвращения большого остаточного намагничивания, сколько для того, чтобы железные опилки не так интенсивно стремились к нему и увлекали с собой поменьше немагнитной пыли). Затем для отсева грязи и крупных фракций собранное можно просеять через ткань (скажем, поместить в тканевый мешочек и протрясти его над расстеленной газетой; на газете чуть сбоку опять ставится магнит, на этот раз лучше магнит посильнее, который улавливает проскочившие через ткань стальные пылинки, а мелкая немагнитная грязь пролетает прямо вниз мимо магнита; крупные частицы грязи и большие стальные опилки не могут пройти через ткань и остаются внутри мешочка). Чем плотнее ткань, тем мельче будет просеянная пыль, но тем дольше придётся трясти мешочек. Для механизации процесса можно попытаться продуть пылинки через ткань мешочка выхлопом пылесоса, но это уже потребует подготовки приспособлений для направления, отклонения и гашения вышедшей из мешочка струи воздуха (скажем, из пустых пластиковых бутылок от питьевой воды, лучше с широким горлышком и объёмом 5-8 литров). Поэтому о «механизированном» варианте стоит думать лишь при достаточно больших объёмах изготавливаемого «продукта», измеряемых литрами, а для нескольких граммов магнитной жидкости, вполне достаточных для большинства экспериментов и многих практических применений, это вряд ли будет оправдано. Конечно, центрифугирование в жидкости обеспечит гораздо лучшую сепарацию частиц, но плотную ткань и пылесос можно найти практически в каждом доме, а вот центрифуги на несколько тысяч оборотов в минуту почему-то распространены не так широко. Если собранная пыль достаточно чистая и однородная, а требования к качеству «магнитной жижи» совсем невысокие, то просеивание вообще можно не делать.

Ещё раз подчеркну - стальные частички должны быть как можно мельче. Для получения мелкой стальной пыли следует использовать мелкозернистый (доводочный) точильный круг. В качестве ориентира можно предложить следующее - при тщательном рассмотрении невооружённым глазом нельзя определить форму пылинок, на белой бумаге они выглядят мельчайшими точками. Если можно определить форму и ориентацию опилок, то такие опилки слишком крупны, они очень быстро осядут и будут практически неподвижными! Зато такие крупные опилки удобно использовать в сухом виде для изучения силовых линий магнитного поля. Критерием следует считать размер, когда у опилок продолговатой формы различимы направления «вдоль» и «поперёк» - при нормальном зрении это обычно соответствует размерам по наибольшей стороне от 0.05–0.1 мм и более, т.е. такие опилки хотя бы по одному из габаритов крупнее 50 .. 100 микрометров.

Отобранная стальная пыль заливается жидкостью, хорошо смачивающей металл. Это может быть обычная вода - желательно, насыщенная поверхностно-активными веществами, то есть мылом или другим моющим средством (пенообразование здесь вредно, поэтому оно должно быть как можно меньше!). Но во избежание быстрой коррозии железных пылинок, способной просто-напросто «съесть» их за несколько дней, для стали лучше использовать жидкое машинное масло. Вполне подойдёт бытовое - то, что используется для смазки швейных машинок. Как вариант, можно использовать и тормозную жидкость, сохраняющую свои свойства в очень широком диапазоне температур. Однако следует помнить, что тормозная жидкость весьма гигроскопична (хотя здесь это не так важно), и в открытом сосуде из неё испаряются летучие фракции, отнюдь не полезные для здоровья, - поэтому работать с ней лучше в хорошо проветриваемом помещении или на открытом воздухе.

Концентрация стальной пыли в жидкости должна быть, с одной стороны, не слишком высокой, чтобы жидкость не стала чересчур густой и вязкой, а с другой стороны, не слишком низкой, иначе перемещение магнитных частиц не сможет увлечь с собой сколько-нибудь заметный объём жидкости. Она подбирается опытным путём с помощью постепенного добавления опилок в жидкость, тщательного перемешивания и проверки магнитом. Лучше оставить небольшой избыток базовой жидкости, нежели получить её недостаток, так как в последнем случае подвижность полученной субстанции уменьшается очень заметно.

Подвижность частиц такой магнитной жидкости определяется величиной силы смачивания металла жидкостью, «изолирующей» металлические частички друг от друга и обеспечивающей их относительно свободное перемещение. Ещё лучше смачивают поверхность пылинок ПАВ (поверхностно-активные вещества), именно поэтому они и используются в «профессиональных» составах. В сильных магнитных полях сила взаимного притяжения частиц может превысить силу смачивания, и тогда частички начнут непосредственно контактировать друг с другом, а жидкость «затвердеет», став в чём-то подобной мокрому песку. Конкретная величина критической силы магнитного поля зависит как от магнитных свойств используемого металла, так и от силы смачивания металла базовой жидкостью или ПАВ, а также от температуры жидкости и размеров металлических частиц (более крупные «слипаются» быстрее, поскольку обладают меньшей удельной поверхностью на единицу массы; кроме того, крупные опилки легко оседают на дно, в то время как особо мелкие пылинки могут поддерживаться во взвешенном состоянии броуновским движением молекул базовой жидкости). При снятии магнитного поля подвижность жидкости восстановится, если остаточная намагниченность будет не слишком большой.

Наконец, надо сказать, что магнитная жидкость из железной пыли получается не только весьма густой, но и обладает высокими абразивными свойствами, поэтому её проблематично прокачивать по каким-либо трубкам, зато она легко может вывести из строя подшипники и рабочие поверхности перекачивающих её насосов (оптимальным типом насоса является шестерёнчатый вытесняющий насос, аналогичный масляным насосам в автомобильных двигателях). Абразивное действие существенно снижается, если просвет между взаимно движущимися деталями превышает размер самых крупных частиц хотя бы в полтора-два раза. Весьма устойчивы к износу в данной ситуации пара материалов «твёрдый металл - прочный упругий пластик». Пластик должен быть именно упругим, как твёрдая резина или фторопласт, но не таким жёстким, как текстолит или эбонит (и конечно, быть химически устойчивым к воздействию базовой жидкости).

Впрочем, во многих случаях эти особенности «магнитной жижи» являются не принципиальными, а многие эффекты проявляются в ней также, как и в «настоящих» магнитных жидкостях. В частности, прижатый ко дну магнит после освобождения успешно всплывает к центру жидкости даже через много минут после завершения осаждения магнитных частиц (правда, в осевшей жидкости это всплытие может продлиться несколько минут, а то и часов). Если тот же магнит, наоборот, положить на поверхность, то он будет погружаться, снова стремясь к центру жидкости (точнее, к центру области, занятой металлическими частицами).

И последнее замечание. Лёгкое потряхивание или постукивание по стенке сосуда существенно увеличивает подвижность «жижи». Если же встряхивать руками не хочется, то подойдёт любой источник слабой вибрации - вплоть до звуковой колонки-сабвуфера, на которую надо подать мощный низкочастотный сигнал (правда, соседям по дому это может сильно не понравиться)! На таком импровизированном «вибростенде» даже отстоявшаяся и малоподвижная «жижа» проявляет неплохую текучесть. ♦

Человеку, далекому от научных открытий, попрощавшемуся с физикой или химией еще в школе, многие вещи кажутся необычными. Пользуясь в повседневности, например, электроприборами, мы не задумываемся о том, как именно они работают, воспринимая блага цивилизации, как должное. Но когда речь заходит о чем-то, выходящем за рамки бытового восприятия, даже взрослые люди изумляются, словно дети, и начинают верить в чудеса.

Чем, кроме магии, можно объяснить явление возникновения из, казалось бы, обычной жидкости объемных фигур, цветов и пирамид, волшебных картин, сменяющих друг друга? А ведь не волшебство, наука дает обоснование происходящему.

Что такое феррожидкость?

Речь идет о феррожидкости – коллоидной системе, состоящей из воды или другого органического растворителя, содержащего мельчайшие частицы магнетита, и любого материала, который содержит железо. Их размеры настолько малы, что даже трудно представить: они в десятки раз тоньше человеческого волоса! Такие микроскопические показатели величины позволяют им равномерно распределяться в растворителе с помощью теплового движения.

До поры, пока нет внешнего воздействия, жидкость спокойна, напоминая собою зеркало. Но стоит только поднести к этому «зеркалу» направленное магнитное поле, как оно оживает, являя зрителю удивительные объемные картины: расцветают волшебные цветы, вырастают на поверхности движущиеся фигуры, изменяющиеся под воздействием поля.

В зависимости от силы и направленности воздействия магнитного поля, картины меняются на глазах – от легкой, едва заметной ряби, появляющейся на поверхности жидкости, через иглы и пики, меняющие остроту и наклон и перерастающие в цветы и деревья.

Возможность создавать цветные картины с помощью подсветки, поистине завораживающие наблюдателя, раскрывают перед ним неизведанный мир.

К сожалению, частицы металла, хоть и названы ферромагнитными, в полном смысле таковыми не являются, так как не могут сохранять получившуюся форму после исчезновения магнитного поля. Поскольку они не обладают собственной намагниченностью. В связи с этим и использование данного открытия, являющегося, к слову, не совсем новым – его совершил американец Розенцвейг еще в середине прошлого века, не нашло широкого применения.

Как сделать и где применяется ферромагнитная жидкость?

Феррожидкости применяются в электронике, в автомобильной промышленности, и хочется верить, что их повсеместное применение не за горами, и с развитием нанотехнологий они будут достаточно широко использоваться. Пока же это большей частью забава для восхищенной публики, избалованной различными видами зрелищ.

Объемные картины заставляют следить за ними, затаив дыхание, сомневаться, не монтаж ли это, и искать объяснение происходящему, хотя бы в интернете. Как знать, быть может маленький мальчик, который сегодня следит за металлическими «живыми» цветами и фигурами, разинув рот, завтра найдет этому явлению принципиально новое применение, произведя революцию в науке и технике. Но это – завтра, а пока – смотрите и наслаждайтесь!

Вы когда-нибудь видели магнитную жидкость? Она похожа на жидкий металл и расшиперивается иголками, если к ней поднести магнит. Здесь вы найдёте инструкцию о том, как в домашних условиях сделать ферромагнитную жидкость своими руками.

Теория такова: современные лазерные принтеры содержат минерал магнетит (Fe3O4). Он нужен для того, чтобы частички краски прилипали к бумаге. Этот минерал реагирует на магнитные поля и таким образом хорошо подойдёт для нашего эксперимента.

Шаг 1: Материалы

  • Защитные перчатки
  • Защитная маска
  • Стеклянный мерный стакан
  • Картридж (старый) от принтера или копира
  • Палочка для размешивания
  • Небольшой контейнер и лист бумаги
  • Сильный неодимовый магнит

Шаг 2: Соберите тонер

Аккуратно высыпьте тонер из картриджа в стеклянный стакан. Нужно около 50 мл.
Проведите магнитом по НАРУЖНЕЙ ЧАСТИ СТАКАНА, чтобы удостовериться, что тонер имеет магнитные свойства

Будьте аккуратны: тонер относительно безопасен, пока вы не вдыхаете и не пьёте его, но он очень легко распыляется и создаёт много грязи, поэтому оденьте защитные перчатки и маску.

Шаг 3: Добавьте масла

Добавьте две столовые ложки масла.

Шаг 4: размешайте

Размешивайте пока жидкость не станет полностью однородной.

Шаг 5: Реакция на магнит

  1. Вылейте немного жидкости в небольшой контейнер.
  2. Подставьте магнит под нижнюю часть контейнера
  3. Жидкость начнёт расшипериваться!

Если результат не похож на то, что вы видите на фотографии, то, скорее всего проблемы с тонером. Некоторые марки содержат больше или меньше магнитных составляющих. Также можете попробовать добавить еще немного масла, или наоборот, убрать его. Некоторые марки совсем не содержат феррофлюид — тогда вам нужно будет найти другой картридж.

Шаг 6: Магические чернила

  1. Теперь вылейте немного магнитной жидкости на бумагу
  2. Двигайте магнитом под бумагой
  3. У вас появляются «магнитные рисунки»!

Если вы испачкали всё вокруг тонером — используйте пылесос для уборки или смойте холодной водой. Не используйте горячую воду и не натирайте места, испачканные тонером — так вы можете втереть его в поверхность навсегда.