20.09.2019

Что называется вращающим моментом. Вращающий момент. Вращающий момент: формула. Момент силы: определение


Мощность и вращающий момент электродвигателя

Данная глава посвящена вращающему моменту: что это такое, для чего он нужен и др. Мы также разберём типы нагрузок в зависимости от моделей насосов и соответствие между электродвигателем и нагрузкой насоса.


Вы когда-нибудь пробовали провернуть вал пустого насоса руками? Теперь представьте, что вы поворачиваете его, когда насос заполнен водой. Вы почувствуете, что в этом случае, чтобы создать вращающий момент, требуется гораздо большее усилие.



А теперь представьте, что вам надо крутить вал насоса несколько часов подряд. Вы бы устали быстрее, если бы насос был заполнен водой, и почувствовали бы, что потратили намного больше сил за тот же период времени, чем при выполнении тех же манипуляций с пустым насосом. Ваши наблюдения абсолютно верны: требуется большая мощность, которая является мерой работы (потраченной энергии) в единицу времени. Как правило, мощность стандартного электродвигателя выражается в кВт.




Вращающий момент (T) - это произведение силы на плечо силы. В Европе он измеряется в Ньютонах на метр (Нм).



Как видно из формулы, вращающий момент увеличивается, если возрастает сила или плечо силы - или и то и другое. Например, если мы приложим к валу силу в 10 Н, эквивалентную 1 кг, при длине рычага (плече силы) 1 м, в результате, вращающий момент будет 10 Нм. При увеличении силы до 20 Н или 2 кг, вращающий момент будет 20 Нм. Таким же образом, вращающий момент был бы 20 Нм, если бы рычаг увеличился до 2 м, а сила составляла 10 Н. Или при вращающем моменте в 10 Нм с плечом силы 0,5 м сила должна быть 20 Н.




Работа и мощность

Теперь остановимся на таком понятии как «работа», которое в данном контексте имеет особое значение. Работа совершается всякий раз, когда сила - любая сила - вызывает движение. Работа равна силе, умноженной на расстояние. Для линейного движения мощность выражается как работа в определённый момент времени.


Если мы говорим о вращении, мощность выражается как вращающий момент (T), умноженный на частоту вращения (w).




Частота вращения объекта определяется измерением времени, за которое определённая точка вращающегося объекта совершит полный оборот. Обычно эта величина выражается в оборотах в минуту, т.е. мин-1 или об/мин. Например, если объект совершает 10 полных оборотов в минуту, это означает, что его частота вращения: 10 мин-1 или 10 об/мин.





Итак, частота вращения измеряется в оборотах в минуту, т.е. мин-1.


Приведем единицы измерения к общему виду.





Для наглядности возьмём разные электродвигатели, чтобы более подробно проанализировать соотношение между мощностью, вращающим моментом и частотой вращения. Несмотря на то, что вращающий момент и частота вращения электродвигателей сильно различаются, они могут иметь одинаковую мощность.





Например, предположим, что у нас 2-полюсный электродвигатель (с частотой вращения 3000 мин-1) и 4-полюсной электродвигатель (с частотой вращения 1500 мин-1). Мощность обоих электродвигателей 3,0 кВт, но их вращающие моменты отличаются.




Таким образом, вращающий момент 4-полюсного электродвигателя в два раза больше вращающего момента двухполюсного электродвигателя с той же мощностью.


Как образуется вращающий момент и частота вращения?


Теперь, после того, как мы изучили основы вращающего момента и скорости вращения, следует остановиться на том, как они создаются.


В электродвигателях переменного тока вращающий момент и частота вращения создаются в результате взаимодействия между ротором и вращающимся магнитным полем. Магнитное поле вокруг обмоток ротора будет стремиться к магнитному полю статора. В реальных рабочих условиях частота вращения ротора всегда отстаёт от магнитного поля. Таким образом, магнитное поле ротора пересекает магнитное поле статора и отстает от него и создаёт вращающий момент. Разницу в частоте вращения ротора и статора, которая измеряется в %, называют скоростью скольжения.




Скольжение является основным параметром электродвигателя, характеризующий его режим работы и нагрузку. Чем больше нагрузка, с которой должен работать электродвигатель, тем больше скольжение.


Помня о том, что было сказано выше, разберём ещё несколько формул. Вращающий момент индукционного электродвигателя зависит от силы магнитных полей ротора и статора, а также от фазового соотношения между этими полями. Это соотношение показано в следующей формуле:



Сила магнитного поля, в первую очередь, зависит от конструкции статора и материалов, из которых статор изготовлен. Однако напряжение и частота тока также играют важную роль. Отношение вращающих моментов пропорционально квадрату отношения напряжений, т.е. если подаваемое напряжение падает на 2%, вращающий момент, следовательно, уменьшается на 4%.





Ток ротора индуцируется через источник питания, к которому подсоединён электродвигатель, а магнитное поле частично создаётся напряжением. Входную мощность можно вычислить, если нам известны данные источника питания электродвигателя, т.е. напряжение, коэффициент мощности, потребляемый ток и КПД.




В Европе мощность на валу обычно измеряется в киловаттах. В США мощность на валу измеряется в лошадиных силах (л.с.).


Если вам необходимо перевести лошадиные силы в киловатты, просто умножьте соответствующую величину (в лошадиных силах) на 0,746. Например, 20 л.с. равняется (20 0,746) = 14,92 кВт.


И наоборот, киловатты можно перевести в лошадиные силы умножением величины в киловаттах на 1,341. Это значит, что 15 кВт равняется 20,11 л.с.

Момент электродвигателя

Мощность [кВт или л.с.] связывает вращающий момент с частотой вращения, чтобы определить общий объём работы, который должен быть выполнен за определённый промежуток времени.


Рассмотрим взаимодействие между вращающим моментом, мощностью и частотой вращения, а также их связь с электрическим напряжением на примере электродвигателей Grundfos. Электродвигатели имеют одну и ту же номинальную мощность как при 50 Гц, так и при 60 Гц.





Это влечёт за собой резкое снижение вращающего момента при 60 Гц: частота 60 Гц вызывает 20%-ное увеличение числа оборотов, что приводит к 20%-ному уменьшению вращающего момента. Большинство производителей предпочитают указывать мощность электродвигателя при 60 Гц, таким образом, при снижении частоты тока в сети до 50 Гц электродвигатели будут обеспечивать меньшую мощность на валу и вращающий момент. Электродвигатели обеспечивают одинаковую мощность при 50 и 60 Гц.


Графическое представление вращающего момента электродвигателя изображено на рисунке.




Иллюстрация представляет типичную характеристику вращающий момент/частота вращения. Ниже приведены термины, используемые для характеристики вращающего момента электродвигателя переменного тока.


Пусковой момент (Мп): Механический вращающий момент, развиваемый электродвигателем на валу при пуске, т.е. когда через электродвигатель пропускается ток при полном напряжении, при этом вал застопорен.


Минимальный пусковой момент (Ммин): Этот термин используется для обозначения самой низкой точки на кривой вращающий момент/частота вращения электродвигателя, нагрузка которого увеличивается до полной скорости вращения. Для большинства электродвигателей Grundfos величина минимального пускового момента отдельно не указывается, так как самая низкая точка находится в точке заторможенного ротора. В результате для большинства электродвигателей Grundfos минимальный пусковой момент такой же, как пусковой момент.


Блокировочный момент (Мблок): Максимальный вращающий момент - момент, который создаёт электродвигатель переменного тока с номинальным напряжением, подаваемым при номинальной частоте, без резких скачков скорости вращения. Его называют предельным перегрузочным моментом или максимальным вращающим моментом.


Вращающий момент при полной нагрузке (Мп.н.): Вращающий момент, необходимый для создания номинальной мощности при полной нагрузке.

Нагрузка насосов и типы нагрузки электродвигателя

Выделяют следующие типы нагрузок:


Постоянная мощность


Термин «постоянная мощность» используется для определённых типов нагрузки, в которых требуется меньший вращающий момент при увеличении скорости вращения, и наоборот. Нагрузки при постоянной мощности обычно применяются в металлообработке, например, сверлении, прокатке и т.п.





Постоянный вращающий момент


Как видно из названия - «постоянный вращающий момент» - подразумевается, что величина вращающего момента, необходимого для приведения в действие какого- либо механизма, постоянна, независимо от скорости вращения. Примером такого режима работы могут служить конвейеры.





Переменный вращающий момент и мощность


«Переменный вращающий момент» - эта категория представляет для нас наибольший интерес. Этот момент имеет отношение к нагрузкам, для которых требуется низкий вращающий момент при низкой частоте вращения, а при увеличении скорости вращения требуется более высокий вращающий момент. Типичным примером являются центробежные насосы.


Вся остальная часть данного раздела будет посвящена исключительно переменному вращающему моменту и мощности.


Определив, что для центробежных насосов типичным является переменный вращающий момент, мы должны проанализировать и оценить некоторые характеристики центробежного насоса. Использование приводов с переменной частотой вращения обусловлено особыми законами физики. В данном случае это законы подобия , которые описывают соотношение между разностями давления и расходами.




Во-первых, подача насоса прямо пропорциональна частоте вращения. Это означает, что если насос будет работать с частотой вращения на 25% больше, подача увеличится на 25%.


Во-вторых, напор насоса будет меняться пропорционально квадрату изменения скорости вращения. Если частота вращения увеличивается на 25%, напор возрастает на 56%.


В-третьих, что особенно интересно, мощность пропорциональна кубу изменения скорости вращения. Это означает, что если требуемая частота вращения уменьшается на 50%, это равняется 87,5%-ному уменьшению потребляемой мощности.


Итак, законы подобия объясняют, почему использование приводов с переменной частотой вращения более целесообразно в тех областях применения, где требуются переменные значения расхода и давления. Grundfos предлагает ряд электродвигателей со встроенным частотным преобразователем, который регулирует частоту вращения для достижения именно этой цели.


Так же как подача, давление и мощность, потребная величина вращающего момента зависит от скорости вращения.





На рисунке показан центробежный насос в разрезе. Требования к вращающему моменту для такого типа нагрузки почти противоположны требованиям при «постоянной мощности». Для нагрузок при переменном вращающем моменте потребный вращающий момент при низкой частоте вращения - мал, а потребный вращающий момент при высокой частоте вращения - велик. В математическом выражении вращающий момент пропорционален квадрату скорости вращения, а мощность - кубу скорости вращения.





Это можно проиллюстрировать на примере характеристики вращающий момент/частота вращения, которую мы использовали ранее, когда рассказывали о вращающем моменте электродвигателя:


Когда электродвигатель набирает скорость от нуля до номинальной скорости, вращающий момент может значительно меняться. Величина вращающего момента, необходимая при определённой нагрузке, также изменяется с частотой вращения. Чтобы электродвигатель подходил для определённой нагрузки, необходимо чтобы величина вращающего момента электродвигателя всегда превышала вращающий момент, необходимый для данной нагрузки.





В примере, центробежный насос при номинальной нагрузке имеет вращающий момент, равный 70 Нм, что соответствует 22 кВт при номинальной частоте вращения 3000 мин-1. В данном случае насосу при пуске требуется 20% вращающего момента при номинальной нагрузке, т.е. приблизительно 14 Нм. После пуска вращающий момент немного падает, а затем, по мере того, как насос набирает скорость, увеличивается до величины полной нагрузки.


Очевидно, что нам необходим насос, который будет обеспечивать требуемые значения расход/напор (Q/H). Это значит, что нельзя допускать остановок электродвигателя, кроме того, электродвигатель должен постоянно ускоряться до тех пор, пока не достигнет номинальной скорости. Следовательно, необходимо, чтобы характеристика вращающего момента совпадала или превышала характеристику нагрузки на всём диапазоне от 0% до 100% скорости вращения. Любой «избыточный» момент, т.е. разница между кривой нагрузки и кривой электродвигателя, используется как ускорение вращения.

Соответствие электродвигателя нагрузке

Если нужно определить, отвечает ли вращающий момент определённого электродвигателя требованиям нагрузки, Вы можете сравнить характеристики скорости вращения/вращающего момента электродвигателя с характеристикой скорости вращения/ вращающего момента нагрузки. Вращающий момент, создаваемый электродвигателем, должен превышать потребный для нагрузки вращающий момент, включая периоды ускорения и полной скорости вращения.


Характеристика зависимости вращающего момента от скорости вращения стандартного электродвигателя и центробежного насоса.





Если мы посмотрим на характеристику, то увидим, что при ускорении электродвигателя его пуск производится при токе, соответствующем 550% тока полной нагрузки.





Когда двигатель приближается к своему номинальному значению скорости вращения, ток снижается. Как и следовало ожидать, во время начального периода пуска потери на электродвигателе высоки, поэтому этот период не должен быть продолжительным, чтобы не допустить перегрева.


Очень важно, чтобы максимальная скорость вращения достигалась как можно точнее. Это связано с потребляемой мощностью: например, увеличение скорости вращения на 1% по сравнению со стандартным максимумом приводит к 3%-ному увеличению потребляемой мощности.


Потребляемая мощность пропорциональна диаметру рабочего колеса насоса в четвертой степени.




Уменьшение диаметра рабочего колеса насоса на 10% приводит к уменьшению потребляемой мощности на (1- (0.9 * 0.9 * 0.9 * 0.9)) * 100 = 34%, что равно 66% номинальной мощности. Эта зависимость определяется исключительно на практике, так как зависит от типа насоса, конструкции рабочего колеса и от того, насколько вы уменьшаете диаметр рабочего колеса.

Время пуска электрдвигателя

Если нам необходимо подобрать типоразмер электродвигателя для определённой нагрузки, например для центробежных насосов, основная наша задача состоит в том, чтобы обеспечить соответствующий вращающий момент и мощность в номинальной рабочей точке, потому что пусковой момент для центробежных насосов довольно низкий. Время пуска достаточно ограниченно, так как вращающий момент довольно высокий.





Нередко для сложных систем защиты и контроля электродвигателей требуется некоторое время для их пуска, чтобы они могли замерить пусковой ток электродвигателя. Время пуска электродвигателя и насоса рассчитывается с помощью следующей формулы:




tпуск = время, необходимое электродвигателю насоса, чтобы достичь частоты вращения при полной нагрузке


n = частота вращения электродвигателя при полной нагрузке


Iобщ = инерция, которая требует ускорения, т.е. инерция вала электродвигателя, ротора, вала насоса и рабочих колёс.


Момент инерции для насосов и электродвигателей можно найти в соответствующих технических данных.





Мизб = избыточный момент, ускоряющий вращение. Избыточный момент равен вращающему моменту электродвигателя минус вращающий момент насоса при различных частотах вращения.











Как видно из приведённых вычислений, выполненных для данного примера с электродвигателем мощностью 4 кВт насоса CR, время пуска составляет 0,11 секунды.

Число пусков электродвигателя в час

Современные сложные системы управления электродвигателями могут контролировать число пусков в час каждого конкретного насоса и электродвигателя. Необходимость контроля этого параметра состоит в том, что каждый раз, когда осуществляется пуск электродвигателя с последующим ускорением, отмечается высокое потребление пускового тока. Пусковой ток нагревает электродвигатель. Если электродвигатель не остывает, продолжительная нагрузка от пускового тока значительно нагревает обмотки статора электродвигателя, что приводит к выходу из строя электродвигателя или сокращению срока службы изоляции.


Обычно за количество пусков, которое может выполнить электродвигатель в час, отвечает поставщик электродвигателя. Например, Grundfos указывает максимальное число пусков в час в технических данных на насос, так как максимальное количество пусков зависит от момента инерции насоса.

Мощность и КПД (eta) электродвигателя

Существует прямая связь между мощностью, потребляемой электродвигателем от сети, мощностью на валу электродвигателя и гидравлической мощностью, развиваемой насосом.


При производстве насосов используются следующие обозначения этих трёх различных типов мощности.




P1 (кВт) Входная электрическая мощность насосов - это мощность, которую электродвигатель насоса получает от источника электрического питания. Мощность P! равна мощности P2, разделённой на КПД электродвигателя.


P2 (кВт) Мощность на валу электродвигателя - это мощность, которую электродвигатель передает на вал насоса.


Р3 (кВт) Входная мощность насоса = P2, при условии, что соединительная муфта между валами насоса и электродвигателя не рассеивает энергию.


Р4 (кВт) Гидравлическая мощность насоса.

§ 92. Вращающий момент асинхронного двигателя

Вращающий момент асинхронного двигателя создается при взаимодействии вращающегося магнитного поля статора с токами в проводниках обмотки ротора. Поэтому вращающий момент зависит как от магнитного потока статора Φ, так и от силы тока в обмотке ротора I 2 . Однако в создании вращающего момента участвует только активная мощность, потребляемая машиной из сети. Вследствие этого вращающий момент зависит не от силы тока в обмотке ротора I 2 , а только от его активной составляющей, т. е. I 2 cos φ 2 , где φ 2 - фазный угол между э. д. с. и током в обмотке ротора.
Таким образом, вращающий момент асинхронного двигателя определяется следующим выражением:

M = C ΦI φ 2 cos φ 2 , (122)

где С - конструктивная постоянная машины, зависящая от числа ее полюсов и фаз, числа витков обмотки статора, конструктивного выполнения обмотки и принятой системы единиц.
При условии постоянства приложенного напряжения и изменении нагрузки двигателя магнитный поток остается также почти постоянным.
Таким образом, в выражении вращающего момента величины С и Φ постоянны и вращающий момент пропорционален только активной составляющей тока в обмотке ротора, т. е.

M ~ I 2 cos φ 2 . (123)

Изменение нагрузки или тормозного момента на валу двигателя, как уже известно, изменяет и скорость вращения ротора, и скольжение.
Изменение скольжения вызывает изменение как силы тока в роторе I 2 , так и ее активной составляющей I 2 cos φ 2 .
Можно силу тока в роторе определить отношением э. д. с. к полному сопротивлению, т. е. на основании закона Ома

где Z 2 , r 2 и x 2 - полное, активное и реактивное сопротивления фазы обмотки ротора,
E 2 - э. д. с. фазы обмотки вращающегося ротора.
Изменение скольжения изменяет частоту тока ротора. При неподвижном роторе (n 2 = 0 и S = 1) вращающееся поле с одинаковой скоростью пересекает проводники обмотки статора и ротора и частота тока в роторе равна частоте тока сети (f 2 = f 1). При уменьшении скольжения обмотка ротора пересекается магнитным полем с меньшей частотой, вследствие чего частота тока в роторе уменьшается. Когда ротор вращается синхронно с полем (n 2 = n 1 и S = 0), проводники обмотки ротора не пересекаются магнитным полем, так что частота тока в роторе равна нулю (f 2 = 0). Таким образом, частота тока в обмотке ротора пропорциональна скольжению, т. е.

f 2 = S f 1 .

Активное сопротивление обмотки ротора почти не зависит от частоты, тогда как э. д. с. и реактивное сопротивление пропорциональны частоте, т. е. изменяются с изменением скольжения и могут быть определены следующими выражениями:

E 2 = S E и X 2 = S X ,

где Е и X - э. д. с. и индуктивное сопротивление фазы обмотки для неподвижного ротора соответственно.
Таким образом, имеем:


и вращающий момент

Следовательно, при небольших скольжениях (примерно до 20%), когда реактивное сопротивление Х 2 = S X мало по сравнению с активным r 2 , увеличение скольжения вызывает увеличение вращающего момента, так как при этом возрастает активная составляющая тока в роторе (I 2 cos φ 2). При больших скольжениях (S X больше, чем r 2) увеличение скольжения будет вызывать уменьшение вращающего момента.
Таким образом, при увеличении скольжения (его больших значениях) хотя и повышается сила тока в роторе I 2 , но ее активная составляющая I 2 cos φ 2 и, следовательно, вращающий момент уменьшаются вследствие значительного возрастания реактивного сопротивления обмотки ротора.
На рис. 115 показана зависимость вращающего момента от скольжения. При некотором скольжении S m (примерно 12 - 20%) двигатель развивает максимальный момент, который определяет перегрузочную способность двигателя и обычно в 2 - 3 раза превышает номинальный момент.

Устойчивая работа двигателя возможна только на восходящей ветви кривой зависимости момента от скольжения, т. е. при изменении скольжения в пределах от 0 до S m . Работа двигателя на нисходящей ветви указанной кривой, т. е. при скольжении S > S m , невозможна, так как здесь не обеспечивается устойчивое равновесие моментов.
Если предположить, что вращающий момент был равен тормозному (M вр = M торм) в точках A и Б , то при случайном нарушении равновесия моментов в одном случае оно восстанавливается, а в другом не восстанавливается.
Допустим, что вращающий момент двигателя почему-либо уменьшился (например, при понижении напряжения сети), тогда скольжение начнет увеличиваться. Если равновесие моментов было в точке А , то увеличение скольжения вызовет возрастание вращающего момента двигателя и он станет вновь равным тормозному моменту, т. е. равновесие моментов восстановится при возросшем скольжении. Если же равновесие моментов было в точке Б , то увеличение скольжения вызовет уменьшение вращающего момента, который будет оставаться всегда меньше тормозного, т. е. равновесие моментов не восстановится и скорость вращения ротора будет непрерывно уменьшаться до полной остановки двигателя.
Таким образом, в точке А машина будет работать устойчиво, а в точке Б устойчивая работа невозможна.
Если приложить к валу двигателя тормозной момент, больший максимального, то равновесие моментов не восстановится и ротор двигателя остановится.
Вращающий момент двигателя пропорционален квадрату приложенного напряжения, так как пропорциональны напряжению как магнитный поток, так и сила тока в роторе. Поэтому изменение напряжения в сети вызывает изменение вращающего момента.

Самое лучшее определение вращательного момента – это тенденция силы вращать предмет вокруг оси, точки опоры или точки вращения. Вращательный момент можно рассчитать с помощью силы и плеча момента (перпендикулярное расстояние от оси до линии действия силы), или используя момент инерции и угловое ускорение.

Шаги

Использование силы и плеча момента

  1. Определите силы, действующие на тело и соответствующие им моменты. Если сила не перпендикулярна рассматриваемому плечу момента (т.е. она действует под углом), то вам может понадобиться найти ее составляющие с использованием тригонометрических функций, таких как синус или косинус.

    • Рассматриваемая составляющая силы будет зависеть от эквивалента перпендикулярной силы.
    • Представьте себе горизонтальный стержень, к которому нужно приложить силу 10 Н под углом 30° над горизонтальной плоскостью, чтобы вращать его вокруг центра.
    • Поскольку вам нужно использовать силу, не перпендикулярную плечу момента, то для вращения стержня вам необходима вертикальная составляющая силы.
    • Следовательно, нужно рассматривать y-составляющую, или использовать F = 10sin30° Н.
  2. Воспользуйтесь уравнением момента, τ = Fr, и просто замените переменные заданными или полученными данными.

    • Простой пример: Представьте себе ребенка массой 30 кг, сидящего на одном конце качели-доски. Длина одной стороны качели составляет 1,5 м.
    • Поскольку ось вращения качели находится в центре, вам не нужно умножать длину.
    • Вам необходимо определить силу, прилагаемую ребенком, с помощью массы и ускорения.
    • Поскольку дана масса, вам нужно умножить ее на ускорение свободного падения, g, равное 9,81 м/с 2 . Следовательно:
    • Теперь у вас есть все необходимые данные для использования уравнения момента:
  3. Воспользуйтесь знаками (плюс или минус), чтобы показать направление момента. Если сила вращает тело по часовой стрелке, то момент отрицательный. Если же сила вращает тело против часовой стрелки, то момент положительный.

    • В случае нескольких приложенных сил, просто сложите все моменты в теле.
    • Поскольку каждая сила стремится вызвать различные направления вращения, важно использовать знак поворота для того, чтобы следить за направлением действия каждой силы.
    • Например, к ободу колеса, имеющего диаметр 0,050 м, были приложены две силы, F 1 = 10,0 Н, направленная по часовой стрелке, и F 2 = 9,0 Н, направленная против часовой стрелки.
    • Поскольку данное тело – круг, фиксированная ось является его центром. Вам нужно разделить диаметр и получить радиус. Размер радиуса будет служить плечом момента. Следовательно, радиус равен 0,025 м.
    • Для ясности мы можем решить отдельные уравнения для каждого из моментов, возникающих от соответствующей силы.
    • Для силы 1 действие направлено по часовой стрелке, следовательно, создаваемый ею момент отрицательный:
    • Для силы 2 действие направлено против часовой стрелки, следовательно, создаваемый ею момент положительный:
    • Теперь мы можем сложить все моменты, чтобы получить результирующий вращательный момент:

    Использование момента инерции и углового ускорения

    1. Чтобы начать решать задачу, разберитесь в том, как действует момент инерции тела. Момент инерции тела – это сопротивление тела вращательному движению. Момент инерции зависит как от массы, так и от характера ее распределения.

      • Чтобы четко понимать это, представьте себе два цилиндра одинакового диаметра, но разной массы.
      • Представьте себе, что вам нужно повернуть оба цилиндра вокруг их центральной оси.
      • Очевидно, что цилиндр с большей массой будет сложнее повернуть, чем другой цилиндр, поскольку он “тяжелее”.
      • А теперь представьте себе два цилиндра различных диаметров, но одинаковой массы. Чтобы выглядеть цилиндрическими и иметь разную массу, но в то же время иметь разные диаметры, форма, или распределение массы обоих цилиндров должна отличаться.
      • Цилиндр с большим диаметром будет выглядеть как плоская закругленная пластина, тогда как меньший цилиндр будет выглядеть как цельная трубка из ткани.
      • Цилиндр с большим диаметром будет сложнее вращать, поскольку вам нужно приложить большую силу, чтобы преодолеть более длинное плечо момента.
    2. Выберите уравнение, которое вы будете использовать для расчета момента инерции. Есть несколько уравнений, которые можно использовать для этого.

      • Первое уравнение – самое простое: суммирование масс и плечей моментов всех частиц.
      • Это уравнение используется для материальных точек, или частиц. Идеальная частица – это тело, имеющее массу, но не занимающее пространства.
      • Другими словами, единственной значимой характеристикой этого тела является масса; вам не нужно знать его размер, форму или строение.
      • Идея материальной частицы широко используется в физике с целью упрощения расчетов и использования идеальных и теоретических схем.
      • Теперь представьте себе объект вроде полого цилиндра или сплошной равномерной сферы. Эти предметы имеют четкую и определенную форму, размер и строение.
      • Следовательно, вы не можете рассматривать их как материальную точку.
      • К счастью, можно использовать формулы, применимые к некоторым распространенным объектам:
    3. Найдите момент инерции. Чтобы начать рассчитывать вращательный момент, нужно найти момент инерции. Воспользуйтесь следующим примером как руководством:

      • Два небольших “груза” массой 5,0 кг и 7,0 кг установлены на расстоянии 4,0 м друг от друга на легком стержне (массой которого можно пренебречь). Ось вращения находится в середине стержня. Стержень раскручивается из состояния покоя до угловой скорости 30,0 рад/с за 3,00 с. Рассчитайте производимый вращательный момент.
      • Поскольку ось вращения находится в середине стержня, то плечо момента обоих грузов равно половине его длины, т.е. 2,0 м.
      • Поскольку форма, размер и строение “грузов” не оговаривается, мы можем предположить, что грузы являются материальными частицами.
      • Момент инерции можно вычислить следующим образом:
    4. Найдите угловое ускорение, α. Для расчета углового ускорения можно воспользоваться формулой α= at/r.

      • Первая формула, α= at/r, может использоваться в том случае, если дано тангенциальное ускорение и радиус.
      • Тангенциальное ускорение – это ускорение, направленное по касательной к направлению движения.
      • Представьте себе объект, двигающийся по криволинейному пути. Тангенциальное ускорение – это попросту его линейное ускорение на любой из точек всего пути.
      • В случае второй формулы, легче всего проиллюстрировать ее, связав с понятиями из кинематики: смещением, линейной скоростью и линейным ускорением.
      • Смещение – это расстояние, пройденное объектом (единица СИ – метры, м); линейная скорость – это показатель изменения смещения за единицу времени (единица СИ – м/с); линейное ускорение – это показатель изменения линейной скорости за единицу времени (единица СИ – м/с 2).
      • Теперь давайте рассмотрим аналоги этих величин при вращательном движении: угловое смещение, θ – угол поворота определенной точки или отрезка (единица СИ – рад); угловая скорость, ω – изменение углового смещения за единицу времени (единица СИ – рад/с); и угловое ускорение, α – изменение угловой скорости за единицу времени (единица СИ – рад/с 2).
      • Возвращаясь к нашему примеру – нам были даны данные для углового момента и время. Поскольку вращение начиналось из состояния покоя, то начальная угловая скорость равна 0. Мы можем воспользоваться уравнением, чтобы найти:
    5. Если вам сложно представить, как происходит вращение, то возьмите ручку и попробуйте воссоздать задачу. Для более точного воспроизведения не забудьте скопировать положение оси вращения и направление приложенной силы.

Электромагнитный момент.

Электромагнитный момент М эм возникает под влиянием сил, действующих на проводники ротора, которые находятся во вращающемся магнитном поле. Обозначим мгновенное значение тока ротора через i 2 s (рис. 3.16), магнитную индукцию в этой же точке через В и длину проводника через l (длина пакета ротора). Тогда сила, действующая на проводник, f = В l i 2 s

Индукция В и ток ротора i 2 s в каждый данный момент времени распределены вдоль окружности ротора примерно по синусоидальному закону, т. е.

Координата, определяющая положение проводника на роторе (рис. 3.16), а ψ 2 - угол сдвига фаз между ЭДС e 2 s (согласно п. 3.4.1 ЭДС e 2 s совпадает по фазе с индукцией В ) и током ротора i 2 s . Таким образом,

Средняя сила, действующая на проводник, определяется как интеграл вдоль окружности ротора от силы f , действующей на один проводник:

Заменяя произведение синусов на разность косинусов, получаем:

Интеграл от второго слагаемого, как интеграл за два периода косинусоидальной функции, равен нулю. Тогда

Обозначим число проводников ротора через N 2 . Сила, действующая на все проводники, будет F = N 2 f ср . Вращающий момент есть произведение силы F на радиус ротора, т. е. M = FD /2 . Зная, что полюсное деление и для синусоиды , находим момент:

Обозначим постоянную

Тогда

(3.20) В этом выражении, где R 2 - активное сопротивление, а X 2 s - индуктивное сопротивление фазы вращающегося ротора. Формула (3.20) показывает, что вращающий момент двигателя создается за счет взаимодействия магнитного потока и тока в обмотке ротора.

Влияние скольжения s и напряжения на фазе статора на вращающий момент двигателя. В (3.20) значение тока определяется из выражения где E 2 s и I 2 s - ЭДС и ток фазы вращающегося ротора;

Подставляя значения I 2s и cos Ψ 2 в (3.20), получаем:

Если учесть, что

то (3.21) можно переписать:


Постоянная

где w 2 - число витков ротора; на одну фазу статора (число фаз равно трем).

Подставляя значения в (3.22), находим:

Используя приведенные значения активного и индуктивного сопротивлений фазы ротора, получаем:

Если пренебречь падением напряжения в обмотке статора, формула принимает вид

Погрешность в определении момента при применении формулы (3.22а) не превышает 5 %,что вполне допустимо для инженерных задач. Из (3.22а) видно, что вращающий момент пропорционален квадрату напряжения фазы статора. Изменение U 1 существенно сказывается на моменте. Так, если U 1 падает на 10 %, то момент падает на 19 %.

Формула (3.22а) может быть выведена также из формулы механической мощности двигателя:

где m - число фаз двигателя. Так как , где - угловая скорость вращающегося поля, то

где ω 1 - угловая частота тока в сети.

Учитывая формулу (3.19) и обозначая X 1 + X ` 2 , получаем:

3.11.3. Характеристика момент-скольжение .

Характеристика момент-скольжение M ( s ) , построенная по (3.23) изображена на рис. 3.17. Точка s = 0, М = 0 соответствует идеальному холостому ходу двигателя, а точка М ном , s ном - номинальному режиму. Участок ОН графика - рабочий участок. На этом участке зависимость M ( s ) практически линейная. Действительно скольжение на этом участке s = 0 + 0,08, поэтому и в формуле (3.23) значением к ) 2 можно пренебречь. Тогда (3.23) принимает вид где - величина для данного двигателя постоянная.

Участок НК , графика соответствует механической перегрузке двигателя. В точке К вращающий момент достигает максимального значения и называется критическим моментом. Скольжение s к , соответствующее критическому моменту, называется критическим скольжением.

Участок ОК характеристики - участок статически устойчивой работы двигателя (под устойчивой работой понимается свойство двигателя автоматически компенсировать малые отклонения в режиме работы за счет собственных характеристик). Пусть, например, в установившемся режиме вр =М) по какой-либо причине момент сопротивления увеличится и станет равным М’>М . Тогда последует переходный процесс: частота вращения ротора п уменьшится, скольжение s увеличится, М вр согласно характеристике M ( s ) возрастет и двигатель выйдет на новый установившийся режим, характеризующийся пониженной частотой вращения n и равенством моментов М’ вр = М’ .

Статически устойчивый участок характеризуется положительной производной dM / ds >0 . Значение критического момента М к может быть найдено из условия dM / ds

. (3.24)

Приравнивая (3.24) нулю, получаем значение критического скольжения

Подставив s к в (3.23), получим

(3.26)

Отношение М к /М ном = k м называется кратностью максимального момента. У серийных двигателейk м =1,7/3,4 . .

Участок КП - участок неустойчивой работы. Если по какой-либо причине М с станет больше М вр , то анализ, аналогичный анализу для устойчивого участка, показывает, что М вр не увеличится, а, наоборот, уменьшится, что приведет к увеличению скольжения и еще большему уменьшению вращающего момента – практически ротор двигателя мгновенно остановится (рис. 3.17, точка П ). Участок неустойчивой работы характеризуется отрицательной производной: dM / ds <0.

В точке П скольжение s п =1 (n =0) .

На участке ПТ скольжение s > 1 . Это возможно, когда направление вращения ротора противоположно направлению вращения поля. Действительно, в этом случае s = n 1 — (- n )/ n 1 > 1 . Значение скольжения s > 1 характеризует тормозной режим двигателя, подробно рассмотренный в § 3.16.

Выражение момента в о. е.(формула Клосса) Для вывода формулы момента в относительных единицах воспользуемся выражением (3.25), т. е. в (3.23) вместо 3 P U 1 2 подставим его значение 2ω 1 X k M k и учтем, что R ‘ 2 = s k X k . В результате преобразования получим формулу Клосса:

. (3.27)

Итак, для равновесия тела, закрепленного на оси, существен не сам модуль силы, а произведение модуля силы на расстояние от оси до линии, вдоль которой действует сила (рис. 115; предполагается, что сила лежит в плоскости, перпендикулярной к оси вращения). Это произведение называется моментом силы относительно оси или просто моментом силы. Расстояние называется плечом силы. Обозначив момент силы буквой , получим

Условимся считать момент силы положительным, если эта сила, действуя в отдельности, вращала бы тело по часовой стрелке, и отрицательным в противном случае (при этом нужно заранее условиться, с какой стороны мы будем смотреть на тело). Например, силам и на рис. 116 нужно приписать положительный момент, а силе - отрицательный.

Рис. 115. Момент силы равен произведению ее модуля на плечо

Рис. 116. Моменты сил и положительны, момент силы отрицателен

Рис. 117. Момент силы равен произведению модуля составляющей силы на модуль радиус-вектора

Моменту силы можно дать еще и другое определение. Проведем из точки , лежащей на оси в той же плоскости, что и сила, в точку приложения силы направленный отрезок (рис. 117). Этот отрезок называется радиус-вектором точки приложения силы. Модуль вектора равен расстоянию от оси до точки приложения силы. Теперь построим составляющую силы , перпендикулярную к радиус-вектору . Обозначим эту составляющую через . Из рисунка видно, что , a . Перемножив оба выражения, получим, что .

Таким образом, момент силы можно представить в виде

где - модуль составляющей силы , перпендикулярной к радиус-вектору точки приложения силы, - модуль радиус-вектора. Отметим, что произведение численно равно площади параллелограмма, построенного на векторах и (рис. 117). На рис. 118 показаны силы, моменты которых относительно оси одинаковы. Из рис. 119 видно, что перенесение точки приложения силы вдоль ее направления не меняет ее момента. Если направление силы проходит через ось вращения, то плечо силы равно нулю; следовательно, равен нулю и момент силы. Мы видели, что в этом случае сила не вызывает вращения тела: сила, момент которой относительно данной оси равен нулю, не вызывает вращения вокруг этой оси.

Рис. 118. Силы и имеют одинаковые моменты относительно оси

Рис. 119. Равные силы с одинаковым плечом имеют равные моменты относительно оси

Пользуясь понятием момента силы, мы можем по-новому сформулировать условия равновесия тела, закрепленного на оси и находящегося под действием двух сил. В условии равновесия, выражаемом формулой (76.1), и есть не что иное, как плечи соответствующих сил. Следовательно, это условие состоит в равенстве абсолютных значений моментов обеих сил. Кроме того, чтобы не возникало вращение, направления моментов должны быть противоположными, т. е. моменты должны отличаться знаком. Таким образом, для равновесия тела, закрепленного на оси, алгебраическая сумма моментов действующих на него сил должна быть равна нулю.

Так как момент силы определяется произведением модуля силы на плечо, то единицу момента силы мы получим, взяв равную единице силу, плечо которой также равно единице. Следовательно, в СИ единицей момента силы является момент силы, равной одному ньютону и действующей на плече один метр. Она называется ньютон-метром (Н·м).

Если на тело, закрепленное на оси, действует много сил, то, как показывает опыт, условие равновесия остается тем же, что и для случая двух сил: для равновесия тела, закрепленного на оси, алгебраическая сумма моментов всех сил, действующих на тело, должна быть равна нулю. Результирующим моментом нескольких моментов, действующих на тело (составляющих моментов), называют алгебраическую сумму составляющих моментов. Под действием результирующего момента тело будет вращаться вокруг оси так же, как оно вращалось бы при одновременном действии всех составляющих моментов. В частности, если результирующий момент равен нулю, то тело, закрепленное на оси, либо покоится, либо вращается равномерно.