20.09.2019

Формула выражающая закон джоуля ленца. Закон Джоуля — Ленца


Рассмотрим однородный проводник, к концам которого приложено напряжение U. За время dt через сечение проводника переносится заряд dq =Idt . Так как ток представляет собой перемещение заряда dq под действием электрического поля, то, по работа тока равна

dA=Udq =IU dt (13.28)

Если сопротивление проводника R, то, используя закон Ома, получим

Мощность тока

(13.30)

Если ток проходит по неподвижному металлическому проводнику, то вся работа тока идёт на его нагревание, и, по закону сохранения энергии,

(13.31)

Таким образом, используя выражение (13.28) и (13.31) , получим

(13.32)

Выражение представляет собой закон Джоуля-Ленца , экспериментально установленный независимо друг от друга Джоулем и Ленцом.

§ 13.7 Законы Ома и Джоуля-Ленца в дифференциальной форме.

Подставив выражение для сопротивления в закон Ома, получим

(13.33)

где величина , обратная удельному сопротивлению, называется удельной электрической проводимостью вещества проводника. Её единица – сименс на метр (См/м).

Учитывая, что
- напряжённость электрического поля в проводнике,
- плотность тока, формулу можно записать в виде

j = γE (13.34)

Закон Джоуля-Ленца в дифференциальноё форме

Выделим в проводнике элементарный цилиндрический объём dV=dSdℓ (ось цилиндра совпадает с направлением тока(рис.13.9)), сопротивление которого
. По закону Джоуля-Ленца, за время в этом объёме выделится теплота

(13.35)

Количество теплоты, выделившееся за единицу времени в единице объёма, называется удельной тепловой мощностью тока . Она равна

ω= ρ∙j 2 (13.36)

Используя дифференциальную форму закона Ома (j = γE) и соотношение , получим ω= j∙E=γ∙E 2 (13.37)

Примеры решения задач

Пример. Сила тока в проводнике равномерно растёт от I 0 =0 до I max =3А за время τ=6с. Определите заряд Q , прошедший по проводнику .

Дано: I 0 =0; I max =3А; τ=6с.

Найти: Q .

Решение. Заряд dQ, проходящий через поперечное сечение проводника за время dt,

По условию задачи сила тока растёт равномерно, т.е. I=kt , где коэффициент пропорциональности

.

Тогда можно записать

Проинтегрировав (1) и подставив выражение для k, найдём искомый заряд, прошедший по проводнику:

Ответ : Q=9 Кл.

Пример. По железному проводнику (ρ =7,87 г/см 3 , М=56∙10 -3 кг/моль) сечением S =0,5 мм 2 течёт ток I =0,1 А. определите среднюю скорость упорядоченного (направленного) движения электронов, считая, что число свободных электронов в единице объёма проводника равно числу атомов n " в единице объёма проводника

Дано: ρ=7,87 г/см 3 ,= 7,87∙10 3 кг/м 3 ; М=56∙10 -3 кг/моль; I=0,1A; S=0,5 мм 2 =0,5 10 -6 м 2 .

Найти: .

Решение . Плотность тока в проводнике

j=ne,

где - средняя скорость упорядоченного движения электронов в проводнике;n - концентрация электронов (число электронов в единице объёма); e=1,6∙10 -19 Кл – заряд электрона.

Согласно условию задачи,

(2)

(учли, что
, где – масса проводника; М – его молярная масса;N A = 6,02∙10 23 моль -1 – постоянная Авогадро;
- плотность железа).

Учитывая формулу (2) и то, что плотность тока
, выражение (1) можно записать в виде

,

Откуда искомая скорость упорядоченного движения электронов

Ответ: =14,8 мкм/с.

Пример. Сопротивление однородной проволоки R =36 Ом. Определите, на сколько равных отрезков разрезали проволоку, если после их параллельного соединения сопротивление оказалось равным R 1 =1Ом.

Дано R =36 Ом; R 1 =1 Ом .

Найти: N.

Решение. Неразрезанную проволоку можно представить как N последовательно соединённых сопротивлений. Тогда

где r – сопротивление каждого отрезка.

В случае параллельного соединения N отрезков проволок

или
(2)

Из выражений (1) и (2) найдём искомое число отрезков

Ответ: N=6

Пример. Определите плотность тока в медной проволоке длиной ℓ=100 м, если разность потенциалов на её концах φ 1 2 =10В. Удельное сопротивление меди ρ =17 нОм∙м.

Дано ℓ=100 м; φ 1 2 =10В; ρ =17 нОм∙м=1,7∙10 -8 Ом∙м .

Найти: j.

Решение. Согласно закону Ома в дифференциальной форме,

где
- удельная электрическая проводимость проводника;
- напряжённость электрического поля внутри однородного проводника, выраженная через разность потенциалов на концах проводника и его длину.

Подставив записанные формулы в выражение (1), найдём искомую плотность тока

Ответ: j=5,88 МА/м 2 .

Пример. Через лампу накаливания течёт ток I =1А, Температура вольфрамовой нити диаметром d 1 =0,2 мм равна 2000ºС. Ток подводится медными проводами сечением S 2 =5мм 2 . Определите напряжённость электростатического поля: 1) в вольфраме; 2) в меди. Удельное сопротивление вольфрама при 0ºС ρ 0 =55 нОм∙ м, его температурный коэффициент сопротивления α 1 =0,0045 град -1 , удельное сопротивление меди ρ 2 =17нОм∙ м.

Дано: I =1А; d 1 =0,2 мм=2∙10 -4 м; Т= 2000ºС; S 2 =5мм 2 =5∙10 -6 м 2 ; ρ 0 =55 нОм∙ м= 5,5∙10 -8 Ом∙м: α 1 =0,0045ºС -1 ; ρ 2 =17нОм∙ м=1,7∙10 -8 Ом∙м .

Найти: Е 1 ; Е 2 .

Решение. Согласно закону Ома в дифференциальной форме, плотность тока

(1)

где
- удельная электрическая проводимость проводника; Е – напряжённость электрического поля.

Удельное сопротивление вольфрама изменяется с температурой по линейному закону:

ρ=ρ 0 (1+αt). (2)

Плотность тока в вольфраме

(3)

Подставив выражение (2) и (3) в формулу (1) , найдём искомую напряжённость электростатического поля в вольфраме

.

Напряжённость электростатического поля в меди

(учли, что
).

Ответ: 1) Е 1 =17,5 В/м; 2) Е 2 =3,4 мВ/м.

Пример. По проводнику сопротивлением R =10Ом течёт ток, сила тока возрастает при этом линейно. Количество теплоты Q , выделившееся в проводнике за время τ =10с, равно 300 Дж. Определите заряд q , прошедший за это время по проводнику, если в начальный м омент времени сила тока в проводнике равна нулю.

Дано: R =10 Ом; τ=10с; Q =300Дж; I 0 =0.

Найти: q.

Решение. Из условия равномерности возрастания силы тока (при I 0 =0) следует, что I=kt, где k – коэффициент пропорциональности. Учитывая, что
, можем записать

dq=Idt=ktdt. (1)

Проинтегрируем выражение (1), тогда

(2)

Для нахождения коэффициента k запишем закон Джоуля-Ленца для бесконечного малого промежутка времени dt:

Проинтегрировав это выражение от0 до, получим количество теплоты, заданное в условии задачи:

,

Откуда найдём k:

. (3)

Подставив формулу (3) в выражение (2), определим искомый заряд

Ответ: q=15 Кл.

Пример. Определите плотность электрического тока в медном проводе (удельное сопротивление ρ=17нОм∙м), если удельная тепловая мощность тока ω=1,7Дж/(м 3 ∙с)..

Дано: ρ=17нОм∙м=17∙10 -9 Ом∙м; ω=1,7Дж/(м 3 ∙с).

Найти: j.

Решение. Согласно законам Джоуля-Ленца и Ома в дифференциальной форме,

(1)

, (2)

где γ и ρ – соответственно удельные и сопротивление проводника. Из закона (2) получим, что Е = ρj. Подставив это выражение в (1), найдём искомую плотность тока:

.

Ответ : j=10 кА/м 3 .

Пример. Определите внутреннее сопротивление источника тока, если во внешней цепи при сила тока I 1 =4А развивается мощность Р 1 =10 Вт, а при силе тока I 2 =6А – мощность Р 2 =12 Вт.

Дано: I 1 =4А; Р 1 =10 Вт; I 2 =6А; Р 2 =12 Вт.

Найти: r.

Решение. Мощность, развиваемая током,

и
(1)

где R 1 и R 2 – сопротивления внешней цепи.

Согласно закону Ома для замкнутой цепи,

;
,

где ε- ЭДС источника. Решив эти два уравнения относительно r, получим

(2)

Ответ : r=0,25 Ом.

Пример . В цепь, состоящую из источника ЭДС и резистора сопротивлением R =10Ом, включают вольтметр, сначала параллельно, а затем последовательно резистору, причём показания вольтметра одинаковы. Определите внутреннее сопротивление r источника ЭДС, если сопротивление вольтметра R V =500 Ом.

Дано: R =10 Ом; R V =500 Ом; U 1 = U 2 .

Найти: r.

Решение. Согласно условию задачи, вольтметр один раз подключают к резистору параллельно (рис.а), второй – последовательно (рис. б), причём его показания одинаковы.

В результате опытов было установлено, что количество тепла выделяемого током при прохождении по проводнику, зависит от сопротивления самого проводника, тока и времени его прохождения.

Этот физический закон был впервые установлен в 1841 году английским физиком Джоулем, а несколько позднее (в 1844 году) независимо от него русским академиком Эмилем Христиановичем Ленцем (1804 - 1865).

Количественные соотношения, имеющие место при нагревании проводника током, называются законом Джоуля-Ленца.

Выше было установлено:

Так как 1 кал = 0,472 кГм, то

Таким образом,

1 Дж = 0,24 кал.

Энергия электрического тока определяется по формуле

A = I 2 × r × t Дж.

Так как энергия тока идет на нагрев, то количество тепла, выделяемое током в проводнике, равно:

Q = 0,24 × I 2 × r × t кал.

Эта формула, выражающая закон Джоуля-Ленца, показывает и дает определение закону, что количество тепла в калориях, выделяемое током при прохождении по проводнику, равно коэффициенту 0,24, умноженному на квадрат тока в амперах, сопротивление в омах и время в секундах.

Видео - "Закон Джоуля-Ленца, физика 8 класс":

Пример 1. Определить, сколько тепла выделит ток в 6 А, проходя по проводнику сопротивлением 2 Ом, в течение 3 минут.

Q = 0,24 × I 2 × r × t = 0,24 × 36 × 2 × 180 = 3110,4 кал.

Формулу закона Джоуля-Ленца можно написать так:

Q = 0,24 × I × I × r × t ,

а так как I × r = U , то можно написать:

Q = 0,24 × I × U × t кал.


Пример 2. Электрическая плитка включена в сеть напряжением 120 В. Ток, протекающий по спирали плитки, 5 А. Требуется определить, сколько тепла выделит ток за 2 часа.

Q = 0,24 × I × U × t = 0,24 × 5 × 120 × 7200 = 1 036 800 кал = 1036,8 ккал.

Видео - "Нагревание проводников электрическим током":

Э. Х. Ленц обобщил опыты электромагнитной индукции, изложив это обобщение в виде "правила Ленца". В своих трудах по теории электрических машин Ленц изучил явление "реакции якоря" в машинах постоянного тока, доказал принцип обратимости электрических машин. Ленц, работая с Якоби, исследовал силу притяжения электромагнитов, установил зависимость магнитного момента от намагничивающей силы.


12 (24) февраля 1804 - 29 января (10 февраля) 1865 (60 лет)

Ленц был членом Петербургской Академии Наук и ректором Петербургского университета.

Эмилий Христианович Ленц (1804 - 1865) - русский знаменитый физик. Он является одним из основоположников электромеханики. С его именем связано открытие закона, определяющего направление и закона, определяющего электрическое поле в проводнике с током.

Кроме того, Эмилий Ленц и английский учёный-физик Джоуль, изучая на опыте независимо один от другого открыли закон, согласно которому количество теплоты, которое выделяется в проводнике, будет прямо пропорционально квадрату электрического тока, который проходит по проводнику, его сопротивлению и времени, в течение которого электрический ток поддерживается неизменным в проводнике.

Данный закон получил название закон Джоуля - Ленца, формула его выражает следующим образом:

где Q - количество выделившейся теплоты, l - ток, R - сопротивление проводника, t - время; величина k называется тепловым эквивалентом работы. Численное значение этой величины зависит от выбора единиц, в которых производятся измерения остальных величин, входящих в формулу.

Если количество теплоты измерять в калориях, ток в амперах, сопротивление в Омах, а время в секундах, то k численно равно 0,24. Это значит, что ток в 1а выделяет в проводнике, который обладает сопротивлением в 1 Ом, за одну секунду число теплоты, которое равно 0,24 ккал. Исходя из этого, количество теплоты в калориях, выделяющееся в проводнике, может быть рассчитано по формуле:

В системе единиц СИ энергия, количество теплоты и работа измеряются единицами - джоулями. Поэтому коэффициент пропорциональности в законе Джоуля - Ленца равен единице. В этой системе формула Джоуля - Ленца имеет вид:

Закон Джоуля - Ленца можно проверить на опыте. По проволочной спиральке, погружённой в жидкость, налитую в калориметр, пропускается некоторое время ток. Затем подсчитывается количество теплоты, выделившейся в калориметре. Сопротивление спиральки известно заранее, ток измеряется амперметром и время секундомером. Меняя ток в цепи и используя различные спиральки, можно проверить закон Джоуля - Ленца.

На основании закона Ома

Подставляя значение тока в формулу (2), получим новое выражение формулы для закона Джоуля - Ленца:

Формулой Q = l²Rt удобно пользоваться при расчёте количества теплоты, выделяемого при последовательном соединении, потому что в этом случае во всех проводниках одинаков. Поэтому, когда происходит нескольких проводников, в каждом из них будет выделено такое количество теплоты, которое пропорционально сопротивлению проводника. Если соединить, например, последовательно три проволочки одинаковых размеров - медную, железную и никелиновую, то наибольшее количество теплоты будет выделяться из никелиновой, так как её наибольшее, она сильнее и нагревается.

Если то электрический ток в них будет различен, а напряжение на концах таких проводников одно и то же. Расчёт количества теплоты, которое будет выделяться при таком соединении, лучше вести, используя формулу Q = (U²/R)t.

Эта формула показывает, что при параллельном соединении каждый проводник выделит такое количество теплоты, которое будет обратно пропорционально его проводимости.

Если соединить три одинаковой толщины проволоки - медную, железную и никелиновую - параллельно между собой и пропустить через них ток, то наибольшее количество теплоты выделится в она и нагреется сильнее остальных.

Беря за основу закон Джоуля - Ленца, производят расчёт различных электроосветительных установок, отопительных и нагревательных электроприборов. Также широко используется преобразование энергии электричества в тепловую.

В XIX веке независимо друг от друга, англичанин Дж.Джоуль и россиянин Э.Х.Ленц изучали нагревание проводников электрическим током и опытным путём установили закономерность: количество теплоты, выделяющееся в проводнике с током, прямо пропорционально квадрату силы тока, сопротивлению проводника и времени прохождения тока.
Позднее было выяснено, что это утверждение справедливо для любых проводников: твёрдых, жидких, газообразных. Поэтому открытая закономерность получила название закон Джоуля-Ленца:

На рисунке показана схема установки, при помощи которой можно экспериментально проверить закон Джоуля-Ленца. Разделив силу тока на напряжение, по формуле R=U/I вычисляют сопротивление. Термометром измеряют повышение температуры воды. По формулам Q=I2Rt и Q=cm D вычисляют количества теплот, которые по результатам опыта должны совпадать.
Для тех, кто интересуется физикой более глубоко, специально заметим, что закон Джоуля-Ленца можно получить не только экспериментально, но и вывести теоретическим путём. Сделаем это.


Полученная формула A=I2Rt похожа на формулу закона Джоуля-Ленца, однако в левой её части стоит работа тока, а не количество теплоты. Что даёт нам право считать эти величины равными? Запишем первый закон термодинамики (см. § 6-з) и выразим из него работу:
D U = Q + A , следовательно, A = D U - Q .
Вспомним, что D U - это изменение внутренней энергии нагреваемого током проводника; Q - количество теплоты, отданное проводником (на это указывает знак «-» впереди); A - работа, совершённая над проводником. Выясним, что это за работа.
Сам проводник неподвижен, но внутри него движутся электроны, постоянно наталкиваясь на ионы кристаллической решётки и передавая им часть своей кинетической энергии. Чтобы поток электронов не ослабевал, над ними постоянно совершают работу силы электрического поля, создаваемого источником электроэнергии. Поэтому A - работа сил электрического поля по перемещению электронов внутри проводника.
Обсудим теперь величину D U (изменение внутренней энергии) применительно к проводнику, в котором начинает течь ток.
Проводник будет постепенно нагреваться, значит, его внутренняя энергия будет увеличиваться. По мере нагрева будет возрастать разность между температурами проводника и окружающей среды. Согласно закономерности Ньютона (см. § 6-к), будет возрастать мощность теплоотдачи проводника. Через некоторое время это приведёт к тому, что температура проводника перестанет увеличиваться. С этого момента внутренняя энергия проводника перестанет изменяться , то есть величина D U станет равной нулю.
Тогда первый закон термодинамики для этого состояния будет: A = -Q. То есть если внутренняя энергия проводника не меняется, то работа тока полностью превращается в теплоту. Используя этот вывод, запишем все три формулы для вычисления работы тока в другом виде:

Эти формулы мы пока будем считать равноправными. Позднее мы обсудим, что правая формула справедлива всегда (поэтому она и носит название закона), а две левых - только при определённых условиях, которые мы сформулируем при изучении физики в старших классах.

Закон Джоуля-Ленца определяет количество теплоты, выделяющейся в проводнике, обладающим сопротивлением за время t, при прохождении через него электрического тока.

Q = a*I*2R*t, где
Q - колическтво выделяемой теплоты (в Джоулях)
a - коэффициент пропорциональности
I - сила тока (в Амперах)
R - Сопротивление проводника (в Омах)
t - Время прохождения (в секундах)

Закон Джоуля-Ленца объясняет, что электрический ток - это заряд, который перемещается под действием электрического поля. При этом поле совершает работу, а ток обладает мощностью и выделяется энергия. Когда эта энергия проходит по неподвижному металлическому проводнику, то она становится тепловой, так как направлена на нагревание проводника.

В дифференциальной форме закон Джоуля-Ленца выражается как объемная плотность тепловой мощности тока в проводнике будет равна произведению удельной электрической проводимости на квадрат напряженности электрического поля.

Применение закона Джоуля-Ленца

Лампы накаливания были придуманы в 1873 году русским инженером Лодыгиным. В лампах накаливания, как и в электронагревательных приборах, применяется закон Джоуля-Ленца. В них используют нагревательный элемент, который является проводником с высоким сопротивлением. За счет этого элемента можно добиться локализованного выделения тепла на участке. Выделение тепла будет появляться при повышении сопротивления, увеличении длины проводника, выбором определенного сплава.

Одной из областей применения закона Джоуля-Ленца является снижение потерь энергии.
Тепловое действие силы тока ведет к потерям энергии. При передаче электроэнергии, передаваемая мощность линейно зависит от напряжения и силы тока, а сила нагрева зависит от силы тока квадратично, поэтому если повышать напряжение, при этом понижая силу тока перед подачей электроэнергии, то это будет более выгодно. Но повышение напряжения ведет к снижению электробезопасности. Для повышения уровня электробезопасности повышают сопротивление нагрузки соответственно повышению напряжения в сети.

Также закон Джоуля-Ленца влияет на выбор проводов для цепей. При неправильном подборе проводов возможен сильный нагрев проводника, а так же его . Это происходит когда сила тока превышает предельно допустимые значения и выделяется слишком много энергии. При правильном подборе проводов для стоит следовать нормативным документам.

Источники:

  • Физическая энциклопедия

Между силой тока и напряжением существует прямо пропорциональная зависимость, описанная законом Ома. Этот закон определяет связь силы тока, напряжения и сопротивления на участке электрической цепи.

Инструкция

Вспомните, ток и напряжение.
- Электрический ток - это упорядоченное течение заряженных частиц (электронов). Для количественного определения используется величина I, называемая силой тока.
- Напряжение U - это разность потенциалов на концах участка электрической цепи. Именно это различие заставляет двигаться электроны, подобно потоку жидкости.

Сила тока измеряется в амперах. В электрических цепях силу тока определяют прибором амперметр. Единицей напряжения является , измерить напряжение в цепи можно с помощью вольтметра. Соберите простейшую электрическую цепь из источника тока, резистора, амперметра и вольтметра.

При замыкании цепи и прохождении по ней тока запишите показания приборов. Измените напряжение на концах сопротивления. Вы увидите, что показания амперметра будут расти с увеличением напряжения и наоборот. Такой опыт демонстрирует прямо пропорциональную зависимость между силой тока и напряжением.