26.02.2019

Разница по температуре между подачей и обраткой. Зависимость температуры теплоносителя от наружной температуры воздуха


Может ли замерзнуть вода в скважине?Нет, вода не замерзнет, т.к. и в песчаной, и в артезианской скважине вода находится ниже точки промерзания грунта. Можно ли в песчаную скважину системы водоснабжения установить трубу диаметром больше 133 мм (у меня насос под большую трубу)?Не имеет смысла при обустройстве песчаной скважины устанавливать трубу большего диаметра, т.к. производительность песчаной скважины небольшая. Для таких скважин специально предназначен насос «Малыш». Может ли проржаветь стальная труба в скважине водоснабжения?Достаточно медленно. Так как при обустройстве скважины загородного водоснабжения производится её гермитизация, в скважину нет доступа кислорода и процесс окисления идет очень медленно. Какие бывают диаметры труб для индивидуальной скважины? Какова производительность скважины при различных диаметрах труб?Диаметры труб для обустройства скважины на воду:114 - 133 (мм) - производительность скважины 1 - 3 куб.м./час;127 - 159 (мм) - производительность скважины 1 - 5 куб.м./час;168 (мм) - производительность скважины 3 - 10 куб.м./час;ПОМНИТЕ! Необходимо, что бы н...

Многие производители котельного оборудования требуют, чтобы на входе в котел была вода не ниже определенной температуры, т. к. холодная обратка плохо сказывается на котле:

    • снижается КПД котла,
    • увеличивается выпадение конденсата на теплообменнике, что приводит к коррозии котла,
    • из-за большой разницы температур на входе и выходе теплообменника его металл расширяется по разному - отсюда напряжения и возможное растрескивание тела котла.
Ниже мы рассмотрим как защитить котел от холодной обратки.

Способ первый - идеальный, но дорогой. Esbe предлагает готовый модуль для подмеса в обратку котла и управления загрузкой теплоаккумулятора (актуально для твердотопливных котлов) - устройство LTC 100 - аналог популярного узла Laddomat (ладдомат).

Фаза 1. Начало процесса горения. Смесительное устройство позволяет быстро повысить температуру котла, таким образом начиная циркуляцию воды только в контуре котла.

Фаза 2: Начало загрузки накопительного бака. Термостат, открывая подключение от накопительного бака, задаёт температуру, которая зависит от версии изделия. Высокая, гарантированная обратная температура к котлу, поддерживается благодаря всему циклу сгорания

Фаза 3: Накопительный бак в процессе загрузки. Хорошее управление обеспечивает эффективную загрузку накопительного бака и правильное расслоение в нём.

Фаза 4: Накопительный бак полностью загружен. Даже на окончательном этапе цикла сгорания, высокое качество регулировки обеспечивает хороший контроль обратной температуры к котлу с одновременной полной загрузкой накопительного бака

Фаза 5: Окончание процесса сгорания. Полностью закрывая верхнее отверстие, поток прямо направляется в накопительный бак, используя тепло в котле

Способ второй - попроще, используя трехходовой термосмесительный клапан высокого качества.

Например клапаны от ESBE или или VTC300. Эти клапаны различаются в зависимости от мощности используемого котла. VTC300 используется при мощности котла до 30кВт, VTC511 и VTC531 - при более мощных котлах от 30 до 150 кВт

Клапан монтируется на байпасной линии между подачей и обраткой котла.

Встроенный термостат открывает вход "А" при температуре на выходе "АВ" равной настройке термостата (50, 55, 60, 65, 70 или 75°C). Вход "В" полностью закрывается когда когда температура на входе "А" превышает номинальную температуру открытия на 10°C.

Подобный клапан выпускает Herz Armaturen - трехходовой термосмесительный клапан Антиконденсат . Выпускается два вида клапанов Heiz Антиконденсат - с отключаемым и фиксированным байпасом.

Схема применения трехходового смесительного клапана Heiz Антиконденсат

При температуре теплоносителя на выходе клапана "АВ" менее 61°C, вход "А" закрыт, через вход "В" идет горячая вода от подачи котла в обратку. При превышении температуры теплоносителя на выходе "АВ" более 63°C байпасный вход "B" перекрывается и теплоноситель из обратки системы через вход "А" поступает в обратку котла. Байпасный выход "В" открывается вновь при падении температуры на выходе "АВ" до уровня 55°C

При прохождении через выход "АВ" теплоносителя температурой менее 61°C, вход "А" с обратки системы закрыт, на выход "АВ" подается горячий теплоноситель с байпаса "В". При достижении на выходе "АВ"температуры более 63°C вход "А" открывается, и вода из обратки смешивается с водой из байпаса "В". Для уравнивания байпаса (чтобы котел не работал постоянно на малый круг циркуляции) перед входом "В" на байпасе требуется установить балансировочный клапан.

Для начала рассмотрим простую схему:

На схеме мы видим котел, две трубы, расширительный бак и группу радиаторов отопления. Красная труба, по которой горячая вода идет от котла к радиаторам называется- ПРЯМОЙ. А нижняя (синяя) труба по которой более холодная вода возвращяется обратно, так и называется- ОБРАТНОЙ. Зная, что при нагреве все тела расширяются (вода в том числе) в нашу систему вмонтирован расширительный бак. Он выполняет сразу две функции: является запасом воды для подпитки системы и в него уходят излишки воды при расширении от нагрева. Вода в данной системе является теплоносителем и поэтому должна циркулировать от котла к радиаторам и обратно. Заставить ее циркулировать может либо насос, либо, при некоторых условиях, сила земной гравитации. Если с насосом все понятно, то с гравитацией у многих могут возникнуть сложности и вопросы. Им мы посвятили отдельную тему. Для более глубокого понимания процесса обратимся к цифрам. К примеру теплопотери дома составляют 10 квт. Режим работы системы отопления стабильный, то есть система ни разогревается, ни остывает. В доме температура не повышается и не понижается.Это значит, что 10 квт вырабатывает котел и 10 квт рассеивают радиаторы. Из школьного курса физики мы знаем, что на нагрев 1 кг воды на 1 градус нам потребуется 4,19 кдж тепла Если мы будем каждую секунду нагревать 1 кг воды на 1 градус, то нам понадобится мощность

Q=4,19*1(кг)*1(град)/1(сек)=4,19 квт.

Если наш котел имеет мощность 10 квт то он может нагреть в секунду 10/4,2=2,4 килограмма воды на 1 градус или 1 килограмм воды на 2,4 градуса, либо 100 грамм воды (не водки) на 24 градуса. Формула для мощности котла выглядит так:

Qкот=4,19*G*(Tвых-Твх) (квт),

где
G- расход воды через котел кг/сек
Твых- температура воды на выходе из котла (можно Т прямой)
Твх- температура воды на входе в котел (можно Т обратной)
Радиаторы тепло рассеивают и количество теплоты которое они отдают зависит от коэффициента теплоотдачи, площади поверхности радиатора и разности температур между стенкой радиатора и воздухом в комнате. Формула выглядит так:

Qрад=k*F*(Трад-Твозд),

где
k-коэффициент теплоотдачи. Величина для бытовых радиаторов практически постоянная и равная k=10ватт/(кв метр*град).
F- суммарная площадь радиаторов (в кв. метрах)
Трад-средняя температура стенки радиатора
Твозд- температура воздуха в комнате.
При стабильном режиме работы нашей системы всегда будет выполняться равенство

Qкот=Qрад

Рассмотрим подробнее работу радиаторов с применением рассчетов и цифр.
Допустим суммарная площадь их оребрения равна 20 кв метров,(что приблизительно соответствует 100 ребрам). Наши 10 квт=10000вт эти радиаторы отдадут при разнице температур в

dT=10000/(10*20)=50 градусов

Если температура в комнате равна 20 градусам, то средняя температура поверхности радиатора будет

20+50=70 градусов.

В случае когда наши радиаторы имеют большую площадь, например 25 квадратных метров (где-то 125 ребер) то

dT=10000/(10*25)=40 градусов.

И средняя температура поверхности составит

20+40=60 градусов.

Отсюда вывод: Если хотите сделать низкотемпературную систему отопления не скупитесь на радиаторы. Средняя температура есть среднеарифмитическое между температурами на входе в радиаторы и выходе.

Тср=(Тпрям+Тобр)/2;

Разница же температур между прямой и обраткой тоже немаловажная величина и характеризует циркуляцию воды через радиаторы.

dT=Тпрям-Тобр;

Помним, что

Q=4,19*G*(Тпр-Тобр)=4,19*G*dT

При неизменной мощности увеличение расхода воды через прибор приведет к снижению dT и наоборот при снижении расхода dT увеличится. Если задаться, что dT в нашей системе составляет 10 градусов, то в первом случае когда Тср=70 градусов после несложных вычислений получим Тпр=75 град и Тобр=65 град. Расход воды через котел равен

G=Q/(4,19*dT)=10/(4,19*10)=0,24 кг/сек.

Если мы уменьшим расход воды ровно в два раза, а мощность котла оставим прежней, то разница температур dT возрастет в два раза. В предыдущем примере мы задавались dT в 10 градусов, таперь при уменьшении расхода она станет dT=20 градусов. При неизменной Тср=70, мы получим Тпр-80 град и Тобр=60 град. Как видим уменьшение расхода воды влечет за собой повышение температуры прямой и снижение температуры обратки. В случаях, когда расход снижается до какой-то критической величины мы можем наблюдать закипание воды в системе. (температура кипения=100 градусов) Так же закипание воды может происходить при переизбытке мощности котла. Явление это крайне нежелательное и очень опасное, поэтому хорошо спроектированная и продуманная система, грамотный подбор оборудования и качественный монтаж это явление исключает.
Как видим из примера температурный режим системы отопления зависит от мощности, которую нужно передать помещению, площади радиаторов и расхода теплоносителя. Объем же теплоносителя залитый в систему при стабильном режиме ее работы не играет никакой роли. Единственное на что влияет объем так это на динамику системы, то есть на время разогрева и остывания. Чем он больше, тем и время разогрева дольше и тем дольше время остывания, что несомненно в некоторых случаях является плюсом. Осталось рассмотреть работу системы в этиъх режимах.
Вернемся к нашему примеру с 10 квтным котлом и радиаторами в 100 ребер с 20 квадратами площади. Насос задает расход в G=0,24 кг/сек. Емкость системы зададим в 240 литров.
К примеру в дом после долгого отсутствия приехали хозяева и начали топить. Дом за время их отсутствия остыл до 5 градусов, как и вода в системе отопления. Включив насос, мы создадим циркуляцию воды в системе, но пока котел не разожжен температура прямой и обратки будет равна одинакова и равна 5 градусов. После розжига котла и выхода его на мощность в 10 квт картина будет следующая: Температура воды на входе в котел будет 5 градусов, на выходе из котла 15 градусов, температура на входе в радиаторы 15 градусов, а на выходе из них чуть меньше 15.(При таких температурах радиаторы практически ничего не излучают) Все это будет продолжаться 1000 секунд, пока насос не прокачает всю воду через систему и к котлу не придет обратка с температурой в почти 15 градусов. После этого котел уже будет выдавать 25 градусов, а радиаторы возвращать в котел воду с температурой чуть менее 25 (примерно 23-24 градуса). И так опять 1000 секунд.
В конце концов система прогреется до 75 градусов на выходе, а радиаторы будут возвращать 65 градусов и система перейдет в стабильный режим. Если бы в системе было 120 литров, а не 240, то система прогрелась бы в 2 раза быстрее. В случае, когда котел потушили, а система горячая, начнется процесс остывания. То есть система будет отдавать дому накопленное тепло. Ясно, что чем больше объем теплоносителя тем дольше будет происходить этот процесс. При эксплуатации твердотопливных котлов это позволяет растянуть время между дозагрузками. Чаще всего эту роль на себя берет , которому мы посвятили отдельную тему. Как и различным видам систем отопления.

После монтажа системы отопления необходимо настроить температурный режим. Проводить эту процедуру нужно согласно существующим нормам.

Требования к температуре теплоносителя изложены в нормативных документах, которые устанавливают проектирование, укладку и использование инженерных систем жилых и общественных сооружений. Они описаны в Государственных строительных нормах и правилах:

  • ДБН (В. 2.5-39 Тепловые сети);
  • СНиП 2.04.05 «Отопление вентиляция и кондиционирование».

Для расчетной температуры воды в подаче принимается та цифра, которая равняется температуре воды на выходе из котла, согласно его паспортным данным.

Для индивидуального отопления решать, какая должна быть температура теплоносителя, следует с учетом таких факторов:

  1. Начало и завершение отопительного сезона по среднесуточной температуре на улице +8 °C на протяжении 3 суток;
  2. Средняя температура внутри отапливаемых помещений жилищно-коммунального и общественного значения должна составлять 20 °C, а для промышленных зданий 16 °C ;
  3. Средняя расчетная температура должна соответствовать требованиям ДБН В.2.2-10, ДБН В.2.2.-4, ДСанПиН 5.5.2.008, СП №3231-85.

Согласно СНиП 2.04.05 «Отопление вентиляция и кондиционирование» (пункт 3.20) предельные показатели теплоносителя такие:

В зависимости от внешних факторов, температура воды в системе отопления может быть от 30 до 90 °С. При нагреве свыше 90 °С начинают разлагаться пыль и лакокрасочное покрытие. По этим причинам санитарные нормы запрещают осуществлять больший нагрев.

Для расчета оптимальных показателей могут быть использованы специальные графики и таблицы, в которых определены нормы в зависимости от сезона:

  • При среднем показателе за окном 0 °С подача для радиаторов с различной разводкой устанавливается на уровне от 40 до 45 °С, а температура обратки – от 35 до 38 °С;
  • При -20 °С на подачу осуществляется нагрев от 67 до 77 °С, а норма обратки при этом должна быть от 53 до 55 °С;
  • При -40 °С за окном для всех приборов отопления ставят максимально допустимые значения. На подаче это – от 95 до 105 °С, а на обратке – 70 °С.

Оптимальные значения в индивидуальной системе отопления

H2_2

Автономное отопление помогает избегать многих проблем, которые возникают с централизованной сетью, а оптимальная температура теплоносителя может регулироваться в соответствии к сезону. В случае индивидуального отопления под понятие нормы включают теплоотдачу прибора отопления на единицу площади помещения, где стоит этот прибор. Тепловой режим в данной ситуации обеспечивается конструктивными особенностями отопительных приборов.

Важно следить, чтобы носитель тепла в сети не остужался ниже 70 °С. Оптимальным считают показатель 80 °С. С газовым котлом контролировать нагрев легче, потому что производители ограничивают возможность нагрева теплоносителя до 90 °С. Используя датчики для регулировки подачи газа, нагрев теплоносителя можно регулировать.

Немного сложнее с аппаратами на твердом топливе, они не регулируют подогрев жидкости, и запросто могут превратить ее в пар. А уменьшить жар от угля или древесины поворотом ручки в такой ситуации невозможно. Контроль нагрева теплоносителя при этом достаточно условный с высокими погрешностями и выполняется поворотными термостатами и механическими заслонками.

Электрические котлы позволяют плавно регулировать нагрев теплоносителя от 30 до 90 °С. Они оснащены отличной системой защиты от перегрева.

Однотрубные и двухтрубные магистрали

Конструктивные особенности однотрубной и двухтрубной сети отопления обуславливают разные нормы для нагрева теплоносителя.

Например, для однотрубной магистрали максимальная норма составляет 105 °С, а для двухтрубной – 95 °С, при этом разница между обраткой и подачей должна быть соответственно: 105 – 70 °С и 95 – 70 °С.

Согласование температуры теплоносителя и котла

Согласовать температуру теплоносителя и котла помогают регуляторы. Это – устройства, которые создают автоматический контроль и корректирование температуры обратки и подачи.

Температура обратки зависима от количества прошедшей по ней жидкости. Регуляторами прикрывают подачу жидкости и увеличивают разницу обратки и подачи до того уровня, который нужен, а необходимые указатели устанавливают на датчике.

Если нужно увеличить поток, то в сеть может быть добавлен насос повышения, который управляется регулятором. Для снижения нагрева подачи применяют «холодный пуск»: ту часть жидкости, какая прошла по сети, из обратки опять переправляют на вход.

Регулятор перераспределяет потоки подачи и обратки соответственно данным, которые снял датчик, и обеспечивает строгие температурные нормы сети отопления.

Способы снижения теплопотерь

Вышеизложенная информация поможет быть использована для правильного расчета нормы температуры теплоносителя и подскажет, как определить ситуации, когда нужно применять регулятор.

Но важно помнить, что на температуру в помещении влияет не только температура теплоносителя, уличного воздуха и сила ветра. Также должна учитываться степень утепления фасада, дверей и окон в доме.

Чтобы снизить теплопотери жилья, нужно побеспокоиться о его максимальной термоизоляции. Утепленные стены, уплотненные двери, металлопластиковые окна помогут сократить утечку тепла. Также при этом снизятся затраты на отопление.

Отопление придумано для того, что бы в зданиях было тепло, происходил равномерный прогрев помещения. При этом конструкция, обеспечивающая тепло должна быть удобной в эксплуатации и ремонте. Отопительная система – это набор деталей и оборудования, служащих для обогрева помещения. Она состоит:

  1. Источник, создающий тепло.
  2. Трубомагистрали (подачи и обратки).
  3. Нагревательные элементы.


Тепло распространяется от исходной точки его создания к нагревательному блоку при помощи теплоносителя. Это может быть: вода, воздух, пар, антифриз и т.д. Самые применяемые жидкие теплоносителем, то есть водяные системы. Они практичны, так как для создания тепла применяется всевозможный тип топлива, так же способны решить проблему обогрева различных строений, ведь существует реально много схем обогрева, различных по свойствам и стоимости. Так же имеют высокую безопасность эксплуатации, продуктивность и оптимальное использование всего оборудования в целом. Но какой бы сложностью не обладали бы системы отопления, их объединяет один и тот же принцип действия.

Коротко об обратке и подачи в системе отопления

Система водяного отопления с помощью подачи от котла подает разогретый теплоноситель к батареям, которые расположены внутри здания. Это дает возможность распределять тепло по всему дому. Затем теплоноситель, то есть вода или антифриз, пройдя по всем имеющимся радиаторам, теряет свою температуру и подается обратно для нагрева.

Самая незамысловатая структура отопления представляет собой нагреватель, две магистрали, расширительный бак и набор радиаторов. Тот водовод, по которому нагретая вода от нагревателя движется к батареям, называется подачей. А водовод, который расположен внизу радиаторов, где вода, теряет свою изначальную температуру возвращается обратно, так и будет называться- обраткой. Так как, нагреваясь, вода расширяется, то система предусматривает специальный бачок. Он решает две задачи: запас воды, что бы насыщать систему; принимает лишнюю воду, которая получается при расширении. Вода, как носитель тепла направляется от котла к радиаторам и назад. Ее течение обеспечивает насос, или естественная циркуляция.

Подача и обратка присутствует в одно и двух трубчатой системе отопления. Но в первой не существует четкого распределения на подающую и обратную трубу, а всю трубную магистраль условно делят пополам. Колонну, которая выходит от котла, называют подачей, а колонну, выходящую с последнего радиатора – обраткой.


В однотрубчатой магистрали нагретая вода из котла последовательно течет из одной батареи в другую, теряя свою температуру. Поэтому в самом конце батареи будут самими холодными. Это главный и, наверное, единственный минус такой системы.

А вот плюсов однотрубный вариант наберет больше: необходимы меньшие затраты на приобретения материалов по сравнению с 2-х трубной; схема имеет более привлекательный вид. Трубу легче спрятать, а так же можно проложить трубы под дверными проемами. Двухтрубная более эффективна – параллельно в систему вмонтированы две арматуры (подача и обратка).

Такая система специалистами считается более оптимальной. Ведь ее работа зыблется на подаче горячей воды по одной трубе, а охлажденную воду отводят в обратном направлении по другой трубе. Радиаторы в таком случае подключаются параллельно, что обеспечивает равномерность их нагрева. Какая из них устанавливает подход должен быть индивидуальным, учитывая при этом множество различных параметров.

Необходимо соблюдать только несколько общих советов:

  1. Вся магистраль должна быть целиком заполнена водой, воздуха это помеха, если трубы завоздушены, качество отопления плохое.
  2. Необходимо поддерживалась достаточно большая скорость циркуляции жидкости.
  3. Разница температур подачи и обратки должна составлять около 30 градусов.

В чем состоит разница между подачей и обраткой отопления

И так, подведем итоги, чем же отличаются между собой подача и обратка в отоплении:

  • Подача – теплоноситель, который идет по водоводам из источника тепла. Этом может быть индивидуальный котел или центральное отопления дома.
  • Обратка — это вода, которая пройдя путь по всех батареям отопления, уходит обратно к источнику тепла. Поэтому на входе системы — подача, на выходе- обратка.
  • Отличается так же температурой. Подача горячее, чем обратка.
  • Способом установки. Тот водовод, который крепится, к верхней части батареи – это подача; тот, что, подключается к нижней части — является обраткой.