08.03.2019

Что такое централизованное теплоснабжение. Централизованные системы теплоснабжения


Несколько сотен лет назад возможность организовать центральное отопление было бы оценена как небывалая по комфорту инновация. Сейчас трудно представить себе все неудобства, связанные с необходимостью растапливать дровяные и угольные очаги в каждой комнате для того, чтобы содержать большие здания тёплыми.

Современную жизнь трудно представить без системы централизованного отопления

История и эволюция

Самой древней системой отопления был очаг с открытым огнём. Такой источник тепла вместе с каминами, печами и современными инфракрасными обогревателями относится к устройствам прямого нагрева, так как преобразование энергии происходит непосредственно на отапливаемом участке.

До древних греков и римлян большинство культур полагались именно на местные системы обогрева. Дымоходы, первоначально представлявшие собой простое отверстие в трубе, эволюционировали в дымовые трубы. Это позволило создать к XIII веку камин - одно из самых совершенных отопительных приспособлений с использованием открытого огня. Первые замкнутые печи около 600 лет до н.э. заменили собой очаги в Китае и оттуда распространились по России и в Северную Европу.

Центральное отопление было изобретено ещё в Древней Греции, а древние римляне создали гипокаусты - самые масштабные и совершенные теплотехнические сооружения античности.

Суть подобных систем отопления заключалась в устройстве полов с воздушными каналами, через которые направляли горячие газы от печи, расположенной за пределами обогреваемых помещений. Гипокаусты исчезли вместе с Римской Империей, и системы центрального отопления были забыты на полторы тысячи лет.

Ниже представлено занимательное видео о том, как подают центральное отопление в наше время:

К ним вернулись снова в начале XIX века, когда промышленная революция потребовала больших зданий для производств, а последующая урбанизация вызвала небывалый спрос на многоэтажные жилые и административные здания. Хронологическая шкала, иллюстрирующая эволюцию внутренних систем обогрева, выглядит так:

  1. 1900000 л назад - начало использования людьми огня.
  2. 23000 л назад- первое доказанное использование угля в качестве топлива.
  3. 7500-5700 л до н. э. - появление открытых очагов в домах.
  4. 2500 л до н. э. - в античной Греции появляются первые сооружения с дымоходами в грунте.
  5. I век до н. э. - усовершенствование древнегреческих систем обогрева до гипокаустов.
  6. 400-е гг. - вместе с падением Римской империи вернулись более примитивные способы отопления.
  7. 1400-1500 гг. - распространение в Европе кирпичной кладки дымоходов.
  8. 1741 г. - Бенджамин Франклин представил печь, значительно превышавшую по эффективности существующие до этого.
  9. 1855 г. - российский предприниматель Сан-Галли изобрёл радиатор отопления.
  10. 1919 г. - Элис Паркер патентует первую систему централизованного отопления.
  11. Конец 1940-х гг.- Роберт С. Уэббер создаёт геотермальный тепловой насос прямого обмена.
  12. 2000-е гг. - продвижение интеллектуальных технологий, позволяющих домовладельцам регулировать тепло удалённо с помощью электронных устройств.

Уголь с древних времен был основным источником тепла

Современные системы

Центральное отопление отличается от местного нагрева тем, что генерация тепла происходит в отдельном помещении или здании, а затем вместе с теплоносителем подаётся к точкам обогрева. Сейчас такие системы стали обычным явлением. И хотя сама инсталляция является одной из самых дорогих, при правильном использовании это весьма экономичный способ отопления с высоким тепловым комфортом. По масштабам и задачам можно выделить три вида систем:

  1. Индивидуальное отопление. Служит для одного собственника в отдельно стоящем здании или для локального обогрева небольшого количества помещений.
  2. Коллективное отопление. Обслуживает несколько пользователей, расположенных, как правило, в одном здании.
  3. . В этом случае котёл или группа котлов обеспечивает тепловую энергию для нескольких зданий или даже целых кварталов, населённых пунктов или районов.

Полезная информация о процедуре перехода на индивидуальное отопление:

Виды по теплоносителю

С конца XVIII века до начала XIX были разработаны и внедрены три основных метода передачи тепла от источника к потребителям, которые, непрерывно совершенствуясь, успешно применяются сейчас в качестве основных. Их смело можно назвать классическими.

Впервые было предложено в 1745 г. Уильямом Куком, а в 1784 г. Джеймс Уатт оборудовал такой системой свой дом.

Дальнейшее развитие состоялось после начала производства радиаторов. Суть его в том, что при конденсации водяного пара выделяется большое количество тепла. Котёл генерирует пар, подаваемый по линиям питания к радиаторам, в которых и происходит конденсация. Вода (конденсат) самотёком или при помощи насосов возвращается в котёл.

Сам по себе пар - хороший и эффективный теплоноситель. Но поскольку системы нуждаются в специфическом оборудовании и выполнении строгих требований при установке, их популярность невелика. В основном паровое отопление используют при высоких рисках замерзания водных систем или когда его применение оправдано наличием уже готового производства пара (прачечные, некоторые фабрики и заводы).


Установка систем парового отопления требует соблюдения строгих правил

Водяное циркуляционное

Наиболее распространённый тип. Температура циркулирующего теплоносителя в трубах - до 100°C (фактически 50-80°C). Нередко интегрируются с горячим водоснабжением. Первые системы были реализованы Петром 1 в России для обогрева Летнего Дворца. Принцип работы таков: котёл (или теплообменник) нагревает воду в системе, с помощью циркуляционного насоса распределяет её на радиаторы, в которых теплоноситель высвобождает тепло. Упрощённо системы водяного отопления представляют собой замкнутый контур, в котором, последовательно нагреваясь и охлаждаясь, циркулирует вода.

Во многих странах густонаселённые районы получают централизованное теплоснабжение на основе горячей воды. В этом случае циркулирующая вода может отбирать избыток тепла у крупных промышленных объектов - тепловых электростанций, установок для сжигания, химических и коксохимических заводов. Как правило, при такой схеме теплоснабжения потребители не имеют резервных способов обогрева зданий в связи с ожидаемо высокой доступностью тепла от систем центральногородского отопления.


Во многих странах наиболее распространен водяной тип отопления

Нагретым воздухом

Принудительное воздушное отопление использует воздух в качестве среды для теплопередачи. Основа этого способа - системы из воздуховодов, вентиляционных отверстий, клапанов, нагнетателей. Разница с обогревом при помощи кондиционеров заключается в том, что воздух забирается через обратные каналы и возвращается к центру его обработки для последующего нагрева. Основное различие между типами центрального воздушного отопления заключается в том, каким образом нагревается воздух. Но независимо от вида нагревательного оборудования, любая система состоит из следующих компонентов:

  • воздушного фильтра;
  • вентилятора;
  • теплообменника;
  • распределительных каналов;
  • элементов управления.

Принудительное воздушное отопление чаще встречается в Северной Америке. В России и странах Европы традиционным считается центральное отопление циркулирующей горячей водой.


В нашей стране центральное отопление горячей водой – традиционный тип отопления

Источники тепла

Применение того или иного первичного источника тепла обусловлено балансом затрат, удобства и эффективности, зависит от климата и доступности того или иного видов топлива. Стоимость энергии для отопления - один из основных расходов на эксплуатацию зданий в холодном климате. Некоторые отопительные установки имеют возможность смены видов топлива для экономии или из резервных соображений.


Одни из основных составляющих системы центрального теплоснабжения – трубы отопления

Печи с принудительным теплообменом

Большинство североамериканских домохозяйств использует печи для организации центрального отопления способом принудительного распределения тёплого воздуха. Внутри печи (газовой, на жидком или твёрдом топливе) пламя нагревает металлический теплообменник и передаёт тепло воздуху в нём. Последний выталкивается из теплообменника с помощью вентилятора, а затем нагнетается в помещения через подпотолочные воздуховоды.

Современные печи оснащаются оборудованием для рекуперации горячих сгоревших газов из дымохода путём возвращения их с помощью вентилятора в теплообменник. Это позволяет экономить до 30% топлива. Существуют также конденсационные печи, возвращающие бо́льшую часть тепла из несгоревших газов способом охлаждения паров воды до их конденсации.

Котельное оборудование

Котлов в системах центподготовленная вода. Распределительная система устраивается таким образом, чтобы нагретая жидкость проходила через линию радиаторов отопления , отдавая в них тепло, а затем, уже охлаждённой, стекала обратно в котёл. Как и в случае с печами, конденсационное и рекуперационное оборудование заметно повышает эффективность котлов.


Котельная – важнейший элемент системы центрального теплоснабжения

Тепловые насосы

Принципиально представляют собой двусторонние кондиционеры. В летнее время они работают, перемещая тепло из помещения в атмосферу, а в зимнее - наоборот. Есть два распространённых вида тепловых насосов: воздушные и геотермальные. Последние более эффективны - получают тепло из грунта, где даже на небольших глубинах температура более или менее постоянна в течение года.

Поскольку электричество в тепловых насосах используется для перемещения тепла, а не его генерации, эти устройства потребляют значительно меньше энергии, чем способны доставить. Полученное тепло распределяется от централизованного источника чаще всего по вентиляционным каналам вместе с нагретым воздухом. Подобные системы отопления актуальны для регионов с мягким климатом и незаменимы как нейтрально воздействующие на природу.


Тепловые насосы помогают доставлять тепло в отдаленные точки системы отопления

Текущее начало XXI века можно охарактеризовать как эпоху зелёных технологий и рационализации существующих ресурсов.

В этом смысле централизованное отопление по-прежнему актуально. Оно может предложить более безвредные для окружающей среды решения: гидротермальные системы, солнечные тепловые станции, экологически чистые комплексы газификации углеводородов.

Познавательная информация об устройте системы теплоснабжения изнутри представлена в видео:

Различают два вида теплоснабжения - централизованное и децентрализованное. При децентрализованном теплоснабжении источник и потребитель тепла находятся близко друг от друга. Тепловая сеть отсутствует. Децентрализованное теплоснабжение разделяют на местное (теплоснабжение от местной котельной) и индивидуальное (печное, теплоснабжение от котлов в квартирах).

В зависимости от степени централизации системы централизованного теплоснабжения (ЦТС) можно разделить на четыре группы:

1. групповое теплоснабжение (ТС) группы зданий;

2. районное - ТС городского района;

3. городское - ТС города;

4. межгородское - ТС нескольких городов.

Процесс ЦТС состоит из трех операций - подготовка теплоносителя (ТН), транспорт ТН и использование ТН.

Подготовка ТН осуществляется на теплоприготовительных установках ТЭЦ и котельных. Транспорт ТН осуществляется по тепловым сетям. Использование ТН осуществляется на теплоиспользующих установках потребителей.

Комплекс установок, предназначенных для подготовки, транспорта и использования теплоносителя называется системой централизованного теплоснабжения.

Различают две основные категории потребления тепла:

Для создания комфортных условий труда и быта (коммунально-бытовая нагрузка). Сюда относят потребление воды на отопление, вентиляцию, горячее водоснабжение (ГВС), кондиционирование;

Для выпуска продукции заданного качества (технологическая нагрузка).

По уровню температуры тепло подразделяется на :

Низкопотенциальное, с температурой до 150 0 С;

Среднепотенциальное, с температурой от 150 0 С до 400 0 С;

Высокопотенциальное, с температурой выше 400 0 С.

относится к низкопотенциальным процессам. Максимальная температура в тепловых сетях не превышает 150 0 С (в прямом трубопроводе), минимальная - 70 0 С (в обратном). Для покрытия технологической нагрузки как правило применяется водяной пар с давлением до 1,4 МПа.

В качестве источников тепла применяются теплоподготовительные установки ТЭЦ и котельных. На ТЭЦ осуществляется комбинированная выработка тепла и электроэнергии на основе теплофикационного цикла. Раздельная выработка тепла и электроэнергии осуществляется в котельных и на конденсационных электростанциях. При комбинированной выработке суммарный расход топлива ниже, чем при раздельной.

Весь комплекс оборудования ис-точника теплоснабжения, тепловых сетей и абонентских установок на-зывается системой централи-зованного теплоснабже-ния.

Системы теплоснабжения клас-сифицируются по типу источника теплоты (или способу приготовле-ния теплоты), роду теплоносителя, способу подачи воды на горячее водоснабжение, числу трубопрово-дов тепловой сети, способу обеспе-чения потребителей, степени цент-рализации.


По типу источника теплоты раз-личают три вида теплоснабжения:

Централизованное теплоснабже-ние от ТЭЦ, называемое тепло-фикацией;

Централизованное теплоснабже-ние от районных или промышлен-ных котельных;

Децентрализованное теплоснаб-жение от местных котельных или индивидуальных отопительных аг-регатов.

По сравнению с централизован-ным теплоснабжением от котель-ных теплофикация имеет ряд пре-имуществ, которые выражаются в экономии топлива за счет комбини-рованной выработки тепловой и электрической энергии на ТЭЦ; в возможности широкого использова-ния местного низкосортного топли-ва, сжигание которого в котельных затруднительно; в улучшении сани-тарных условий и чистоты воздуш-ного бассейна городов и промыш-ленных районов благодаря концент-рации сжигания топлива в неболь-шом количестве пунктов, размещен-ных, как правило, на значительном расстоянии от жилых кварталов, и более рациональному использова-нию современных методов очистки дымовых газов от вредных при-месей.

По роду теплоносителя системы теплоснабжения разделяются на водяные и паровые. Паровые системы распространены в основ-ном на промышленных предприя-тиях, а водяные системы применя-ются для теплоснабжения жилищ-но-коммунального хозяйства и не-которых производственных потреби-телей. Объясняется это рядом пре-имуществ воды как теплоносителя по сравнению с паром: возмож-ностью центрального качественного регулирования тепловой нагрузки, меньшими энергетическими потеря-ми при транспортировке и большей дальностью теплоснабжения, отсут-ствием потерь конденсата греюще-го пара, большей комбинированной выработкой энергии на ТЭЦ, повы-шенной аккумулирующей способ-ностью.

По способу подачи воды на го-рячее водоснабжение водяные си-стемы делятся на закрытые и открытые.

В закрытых системах се-тевая вода используется только как теплоноситель и из системы не отбирается. В местные установки горячего водоснабжения поступает вода из питьевого водопровода, на-гретая в специальных водоводяных подогревателях за счет теплоты се-тевой воды.

В открытых системах се-тевая вода непосредственно посту-пает в местные установки горя-чего водоснабжения. При этом не требуются дополнительные тепло-обменники, что значительно упро-щает и удешевляет устройство або-нентского ввода. Однако потери воды в открытой системе резко возрастают (от 0,5—1 % до 20— 40 % общего расхода воды в систе-ме) и состав воды, подаваемой по-требителям, ухудшается из-за при-сутствия в ней продуктов коррозии и отсутствия биологической обра-ботки.

Достоинства закрытых систем теплоснабжения заключаются в том, что их применение обеспечи-вает стабильное качество горячей воды, поступающей в установки го-рячего водоснабжения, одинаковое с качеством водопроводной воды; гидравлическую изолированность воды, поступающей в установки го-рячего водоснабжения, от воды, циркулирующей в тепловой сети; простоту контроля герметичности системы по величине подпитки.

Основными недостатками закры-тых систем являются усложнение и удорожание оборудования и экс-плуатации абонентских вводов из-за установки водо-водяных подо-гревателей и коррозии местных установок горячего водоснабжения вследствие использования недеаэрированной воды.

Основные достоинства открытых систем теплоснабжения заключают-ся в возможности максимального использования низкопотенциальных источников теплоты для подогрева большого количества подпиточной воды. Поскольку в закрытых систе-мах подпитка не превышает 1 % расхода сетевой воды, возможность утилизации теплоты сбросной и продувочной воды на ТЭЦ с закры-той системой значительно ниже, чем в открытых системах. Кроме того, в местные установки горячего водоснабжения в открытых систе-мах поступает деаэрированная во-да, поэтому они меньше подвер-жены коррозии и более долго-вечны.

Недостатками открытых систем являются : необходимость устройст-ва на ТЭЦ мощной водоподготовки для подпитки тепловой сети, что удорожает станционную водоподготовку, особенно при повышенной жесткости исходной сырой воды; усложнение и увеличение объема санитарного контроля за системой; усложнение контроля герметичности системы (поскольку величина под-питки не характеризует плотность системы); нестабильность гидравли-ческого режима сети.

По числу трубопроводов разли-чают одно-, двух- и многотрубные системы. Причем для открытой си-стемы минимальное число трубо-проводов — один, а для закры-той— два. Самой простой и перс-пективной для транспортировки теплоты на большие расстояния яв-ляется однотрубная открытая си-стема теплоснабжения. Однако об-ласть применения таких систем ог-раничена в связи с тем, что ее реа-лизация возможна лишь при усло-вии равенства расхода воды, необ-ходимого для удовлетворения отопительно-вентиляционной нагруз-ки, расходу веды для горячего водоснабжения потребителей дан-ного района. Для большинства районов нашей страны расход воды на горячее водоснабжение значи-тельно меньше (в 3—4 раза) рас-хода сетевой воды на отопление и вентиляцию, поэтому в теплоснаб-жении городов преимущественное распространение получили двух-трубные системы. В двухтрубной системе тепловая сеть состоит из двух линий: подающей и обратной.

По способу обеспечения потре-бителей теплотой различают одно-
ступенчатые и многоступенчатые системы теплоснабжения. В одно-
ступенчатых системах потребители теплоты присоединяются к тепловым сетям непосредственно. Узлы присоединения потребителей к сети
называются абонентскими вводами или местными теп-ловыми пунктами (МТП). На абонентском вводе каждого здания устанавливаются подогреватели горячего водоснабжения, элеваторы, насосы, контрольно-измерительные приборы и регулирующая армату-ра для изменения параметров теп-лоносителя в местных системах по-требителей.

В многоступенчатых системах между источником теплоты и по-требителями размещаются цент-ральные тепловые пункты или под-станции (ЦТП), в которых пара-метры теплоносителя изменяются в зависимости от расходования теп-лоты местными потребителями. На ЦТП размещаются центральная по-догревательная установка горячего водоснабжения, центральная смеси-тельная установка сетевой воды, подкачивающие насосы холодной водопроводной воды, авторегулирующие и контрольно-измеритель-ные приборы. Применение много-ступенчатых систем с ЦТП позво-ляет снизить начальные затраты на сооружение подогревательной ус-тановки горячего водоснабжения, насосных установок и авторегулирующйх устройств благодаря уве-личению их единичной мощности и сокращению числа элементов обо-рудования.

Оптимальная расчетная произ-водительность ЦТП зависит от планировки района, режима работы потребителей и определяется на ос-нове технико-экономических расче-тов.

По степени централизации теп-лоснабжение можно разделить на групповое — теплоснабжение группы зданий, районные - теплоснабжение нескольких групп зданий, городское - теплоснабжение нескольких районов, межгородское - теплоснабжение нескольких городов.

Устройство и конструкции тепловых сетей.

Основными элементами тепловых сетей являются трубопровод, состоящий из стальных труб, соединенных между собой с помощью сварки; изоляционная конструкция, воспринимающая вес трубопровода и усилия, возникающая при его эксплуатации.

Трубы являются ответственными элементами трубопроводов и должны отвечать следующим требованием:

Достаточная прочность и герметичность при максимальных значениях давления и температуры теплоносителя,

Низкий коэффициент температурных деформации,

Обеспечивающий небольшие термические напряжение при переменном тепловом режиме тепловой сети,

Малая шероховатость внутренней поверхности,

Антикорозинная стойкость,

Высокая термическая сопротивление стенок трубы,

Способствующее сохранению теплоты и температуры теплоносителя,

Неизменность свойств материала при длительном воздействий высоких температур и давлений, простота монтажа,

Надежность соединения труб и др.

Имеющейся стальные трубы не удовлетворяют в полной мере всем предъявлемым требованиям, однако их механические свойства, простота, надежность и герметичность соединений (сваркой) обеспечили им преимущественное применение в тепловых сетях.

Трубы для тепловых сетей изготавливаются в основном из сталей марок Ст2сп, Ст3сп, 10, 20, 10Г2С1, 15ГС, 16ГС.

В тепловых сетях применяются бесшовные горячекатаные и электросварные. Бесшовные горячекатаные трубы выпускаются с наружными диаметрами 32 - 426мм. Бесшовные горячекатаные электросварные трубы используется при всех способах прокладки сетей. Электросварные трубы используются при всех способах прокладки сетей. Электросварные со спиральным швом рекомендуются к использованию при канальных и надземных прокладках сетей.

Опоры . При сооружений тепловых сетей применяются опоры двух типов: свободные и неподвижные. Свободные опоры воспринимают вес теплопровода и обеспечивают его свободное перемещение при температурных деформациях. Неподвижные опоры предназначены для закрепления трубопровода в характерных точках сети и воспринимают усилия, возникающие в месте фиксации как в радиальном, так и в осевом направлениях под действием веса, температурных деформаций и внутреннего давления.

Компенсаторы . Компенсация температурных деформации в трубопроводах производится специальными устройствами, называемыми компенсаторами. По принципу действия они разделяются на две группы:

Компенсаторы радиальные или гибкие, воспринимающие удлинения теплопровода изгибом или кручением криволинейных участков труб или изгибом специальных эластичных вставок различной формы;

Компенсаторы осевые, в которых удлинение воспринимаются телескопическим перемещением труб или сжатием пружинных вставок.

Наиболее широкое применение в практике имеют гибкие компенсаторы различной конфигурации, выполненные из самого трубопровода (П - и -S-образные, лирообразные со складками и без них и т.д.). Простота устройства, надежность, отсутствия необходимости в обслуживании, разгруженность неподвижных опор - достоинство этих компенсаторов.

К недостаткам гибких компенсаторов относятся: повышенное гидравлическое сопротивление, увеличенный расход труб, поперечное перемещение деформируемых участках, требующее увеличение ширины непроходных каналов и затрудняющее применение засыпных изоляций, бесканальных трубопроводов, а так же большие габариты, затрудняющие их применение в городах при насыщенности трассы городскими подземными коммуникациями.

Осевые компенсаторы выполняются скользящего типа (сальниковые) и упругими (линзовые компенсаторы).

Сальниковый компенсатор изготавливается из стандартных труб и состоит из корпуса, стакана и уплотнение. При удлинений трубопровода стакан вдвигается в полость корпуса. Герметичность скользящего соединения корпуса и стакана создается сальниковой набивкой, которая выполняется из прографиченного асбестового шнура, пропитанного маслом. Со временем набивка истирается и теряет упругость, поэтому требуется периодическая подтяжка сальника и замена набивки. От этого недостатка свободны линзовые компенсаторы, изготавливаемые из листовой стали. Линзовые компенсаторы сварного типа находят основное применение на трубопроводах низкого давления (до 0,4-0,5 МПа).

Конструктивное выполнение элементов трубопровода зависит так же от способа его прокладки, который выбирается на основании технико-экономического сравнения возможных вариантов.

Глава 12. Системы теплоснабжения

Основные понятия процесса теплоснабжения

Система теплоснабжения - совокупность взаимосвязанных энергоустановок, осуществляющих теплоснабжение района, города или предприятия. Система теплоснабжения – это сложная, технологически увязанная цепочка операций, состоящая из процессов производства, передачи и потребления тепловой энергии. Основные задачи функционирования этой системы – качественное и бесперебойное теплоснабжение потребителей. При этом, в грамотно спроектированных, налаженных системах, соотношение эффективность/качество должно ответствовать наивысшим стандартам.

Системой теплоснабжения называется комплекс устройств по выработке, транспорту и использованию теплоты. Снабжение теплотой потребителей (систем отопления, вентиляции, горячего водоснабжения и технологических процессов) состоит из трех взаимосвязанных процессов: сообщения теплоты теплоносителю, транспорта теплоносителя и использования теплового потенциала теплоносителя.

Необходимость создания систем теплоснабжения обусловлена следующими основными причинами: суровыми климатическими условиями основных районов страны, когда в течение 200-360 дней в году необходимо отопление жилых, общественных и производственных зданий; невозможностью осуществления многих технологических процессов без затрат теплоты, например, производство электроэнергии, варка и сушка материалов, стирка белья и др.; необходимостью удовлетворения санитарно-гигиенических нужд населения в горячей воде для мытья посуды, уборки помещений и других процессов.

Системы теплоснабжения классифицируются по мощности и виду источника теплоты; виду теплоносителя; способам и схемам присоединения, количеству трубопроводов и другим признакам.

Различают централизованные и местные системы теплоснабжения. Системы местного теплоснабжения обслуживают часть или все здание на базе печного отопления или домовой котельной установки. Централизованные системы теплоснабжения - один или несколько районов города. Поэтому они включают в себя источники теплоснабжения (котельные, ТЭЦ), тепловые сети, тепловые пункты и системы отопления, вентиляции и горячего водоснабжения зданий



По виду потребителя системы теплоснабжения можно разделить на промышленные, промышленно-отопительные и отопительные. В промышленных системах теплоснабжения главной составляющей тепловой нагрузки является расход теплоты на технологические нужды, в отопительных системах – коммунально-бытовые нагрузки жилых и общественных зданий, а в промышленно - отопительных системах теплоту от одного источника получают как промышленные предприятия, так и жилищно-коммунальный сектор города.

По мощности системы теплоснабжения характеризуются дальностью передачи теплоты и числом потребителей.

Местные системы теплоснабжения - это системы, в которых три основных звена (источник тепла, сети и потребители) объединены и находятся в одном или смежных помещениях. При этом получение теплоты и передача ее воздуху помещений объединены в одном устройстве и расположены в отапливаемых помещениях (печи). Централизованные системы – это системы, в которых от одного источника теплоты подается теплота для многих помещений. По виду источника теплоты системы централизованного теплоснабжения разделяют на районное теплоснабжение и теплофикацию. При системе районного теплоснабжения источником теплоты служит районная котельная, теплофикации - ТЭЦ. Теплоноситель получает теплоту в районной котельной (или ТЭЦ) и по наружным трубопроводам, которые носят название тепловых сетей, поступает в системы отопления, вентиляции промышленных, общественных и жилых зданий. В нагревательных приборах, расположенных внутри зданий, теплоноситель отдает часть аккумулированной в нем теплоты и отводится по специальным трубопроводам обратно к источнику теплоты.

Централизованные системы теплоснабжения. В зависимости от степени централизации системы централизованного теплоснабжения (ЦТС) можно разделить на четыре группы:

Групповое теплоснабжение различается на: районное (теплоснабжение городского района); городское (теплоснабжение города); межгородское (теплоснабжение нескольких городов).

Процесс централизованного теплоснабжения состоит из трех операций – подготовка теплоносителя, транспорт теплоносителя и использование теплоносителя. Подготовка теплоносителя осуществляется в системах водоподготовки ТЭЦ и котельных. Транспорт теплоносителя осуществляется по тепловым сетям. Использование теплоносителя осуществляется на теплоиспользующих установках потребителей. Комплекс установок, предназначенных для подготовки, транспорта и использования теплоносителя называется системой централизованного теплоснабжения.

Различают две основные категории потребления тепла:

Для создания комфортных условий труда и быта (коммунально-бытовая нагрузка). Сюда относят потребление воды на отопление, вентиляцию, горячее водоснабжение (ГВС), кондиционирование;

Для выпуска продукции заданного качества (технологическая нагрузка).

По уровню температуры тепло подразделяется на:

Низкопотенциальное, с температурой до 150 0 С;

Среднепотенциальное, с температурой от 150 0 С до 400 0 С;

Высокопотенциальное, с температурой выше 400 0 С.

Коммунально-бытовая нагрузка относится к низкопотенциальным процессам. Максимальная температура в тепловых сетях не превышает 150 0 С (в прямом трубопроводе), минимальная – 70 0 С (в обратном). Для покрытия технологической нагрузки, как правило, применяется водяной пар с давлением до 1,4 МПа. В качестве источников тепла применяются теплоподготовительные установки ТЭЦ и котельных. На ТЭЦ осуществляется комбинированная выработка тепла и электроэнергии на основе теплофикационного цикла. Раздельная выработка тепла и электроэнергии осуществляется в котельных и на конденсационных электростанциях. При комбинированной выработке суммарный расход топлива ниже, чем при раздельной.

Комплекс оборудования источника теплоснабжения, тепловых сетей и абонентских установок называется системой централизованного теплоснабжения. Системы теплоснабжения классифицируются по типу источника теплоты (или способу приготовления теплоты), роду теплоносителя, способу подачи воды на горячее водоснабжение, числу трубопроводов тепловой сети, способу обеспечения потребителей, степени централизации.

По типу источника теплоты различают три вида теплоснабжения:

Централизованное теплоснабжение от ТЭЦ, называемое теплофикацией;

Централизованное теплоснабжение от районных или промышленных котельных;

Децентрализованное теплоснабжение от местных котельных или индивидуальных отопительных агрегатов.

По сравнению с централизованным теплоснабжением от котельных теплофикация имеет ряд преимуществ, которые выражаются в экономии топлива за счет комбинированной выработки тепловой и электрической энергии на ТЭЦ; в возможности широкого использования местного низкосортного топлива, сжигание которого в котельных затруднительно; в улучшении санитарных условий и чистоты воздушного бассейна городов и промышленных районов благодаря концентрации сжигания топлива в небольшом количестве пунктов, размещенных, как правило, на значительном расстоянии от жилых кварталов, и более рациональному использованию современных методов очистки дымовых газов от вредных примесей.

Породу теплоносителя системы теплоснабжения разделяются на водяные и паровые. Паровые системы распространены в основном на промышленных предприятиях, а водяные системы применяются для теплоснабжения жилищно-коммунального хозяйства и некоторых производственных потребителей. Объясняется это рядом преимуществ воды как теплоносителя по сравнению с паром: возможностью центрального качественного регулирования тепловой нагрузки, меньшими энергетическими потерями при транспортировке и большей дальностью теплоснабжения, отсутствием потерь конденсата греющего пара, большей комбинированной выработкой энергии на ТЭЦ, повышенной аккумулирующей способностью.

По способу подачи воды на горячее водоснабжение водяные системы делятся на закрытые и открытые.

В закрытых системах сетевая вода используется только как теплоноситель и из системы не отбирается. В местные установки горячего водоснабжения поступает вода из питьевого водопровода, нагретая в специальных водо-водяных подогревателях за счет теплоты сетевой воды.

В открытых системах сетевая вода непосредственно поступает в местные установки горячего водоснабжения. При этом не требуются дополнительные теплообменники, что значительно упрощает и удешевляет устройство абонентского ввода. Однако потери воды в открытой системе резко возрастают (от 0,5-1 % до 20- 40 % общего расхода воды в системе) и состав воды, подаваемой потребителям, ухудшается из-за присутствия в ней продуктов коррозии и отсутствия биологической обработки.

Достоинства закрытых систем теплоснабжения заключаются в том, что их применение обеспечивает стабильное качество горячей воды, поступающей в установки горячего водоснабжения, одинаковое с качеством водопроводной воды; гидравлическую изолированность воды, поступающей в установки горячего водоснабжения, от воды, циркулирующей в тепловой сети; простоту контроля герметичности системы по величине подпитки.

Основными недостатками закрытых систем являются усложнение и удорожание оборудования и эксплуатации абонентских вводов из-за установки водо-водяных подогревателей и коррозии местных установок горячего водоснабжения вследствие использования недеаэрированной воды.

Основные достоинства открытых систем теплоснабжения заключаются в возможности максимального использования низкопотенциальных источников теплоты для подогрева большого количества подпиточной воды. Поскольку в закрытых системах подпитка не превышает 1 % расхода сетевой воды, возможность утилизации теплоты сбросной и продувочной воды на ТЭЦ с закрытой системой значительно ниже, чем в открытых системах. Кроме того, в местные установки горячего водоснабжения в открытых системах поступает деаэрированная вода, поэтому они меньше подвержены коррозии и более долговечны.

Недостатками открытых систем являются: необходимость устройства на ТЭЦ мощной водоподготовки для подпитки тепловой сети, что удорожает станционную водоподготовку, особенно при повышенной жесткости исходной сырой воды; усложнение и увеличение объема санитарного контроля за системой; усложнение контроля герметичности системы (поскольку величина подпитки не характеризует плотность системы); нестабильность гидравлического режима сети.

По числу трубопроводов различают одно-, двух- и многотрубные системы. Причем для открытой системы минимальное число трубопроводов - один, а для закрытой - два. Самой простой для транспортировки теплоты на большие расстояния является однотрубная открытая система теплоснабжения. Однако область применения таких систем ограничена в связи с тем, что ее реализация возможна лишь при условии равенства расхода воды, необходимого для удовлетворения отопительно-вентиляционной нагрузки, расходу воды для горячего водоснабжения потребителей данного района. Для большинства районов нашей страны расход воды на горячее водоснабжение значительно меньше (в 3 - 4 раза) расхода сетевой воды на отопление и вентиляцию, поэтому в теплоснабжении городов преимущественное распространение получили двухтрубные системы. В двухтрубной системе тепловая сеть состоит из двух линий: подающей и обратной.

По способу обеспечения потребителей теплотой различают одноступенчатые и многоступенчатые системы теплоснабжения. В одноступенчатых системах потребители теплоты присоединяются к тепловым сетям непосредственно.

В многоступенчатых системах между источником теплоты и потребителями размещаются центральные тепловые пункты или подстанции, в которых параметры теплоносителя изменяются в зависимости от расходования теплоты местными потребителями. На центральных тепловых пунктах размещаются центральная подогревательная установка горячего водоснабжения, центральная смесительная установка сетевой воды, подкачивающие насосы холодной водопроводной воды, авторегулирующие и контрольно-измерительные приборы. Применение многоступенчатых систем с центральными тепловыми пунктами позволяет снизить начальные затраты на сооружение подогревательной установки горячего водоснабжения, насосных установок и авторегулирующих устройств благодаря увеличению их единичной мощности и сокращению числа элементов оборудования.

Оптимальная расчетная производительность центральных тепловых пунктов зависит от планировки района, режима работы потребителей и определяется на основе технико-экономических расчетов.

С началом нового отопительного сезона в прессе как обычно разгорается дискуссия: что предпочтительнее для нашей обширной и холодной страны - традиционные сети центрального отопления или новомодные индивидуальные котельные? Казалось бы, в пользу последних свидетельствуют солидные экономические выкладки, обширный опыт, накопленный западными странами, несколько успешных российских проб и общая тенденция развития многострадального отечественного ЖКХ. Но, разрабатывая концепции и давая безапелляционные рекомендации, не слишком ли мы увлекаемся? Так ли уж устарела и отстала от сегодняшних реалий централизованная система отопления, и нет ли возможности и способов сделать ее более эффективной? Попробуем разобраться в этом непростом вопросе.
Обращаясь к истории, можно увидеть, что успешные попытки организации центрального отопления городских кварталов предпринимались еще в XIX в. Вызваны они были как насущной необходимостью, так и техническим прогрессом. Все разумно: проще обслуживать один большой нагревательный котел, делать один дымоход, подвозить топливо и т.п. Как только появились электрические сети и достаточно мощные надежные насосы, чтобы перекачивать значительные объемы горячей воды, возникли и крупные сети централизованного теплоснабжения.
По многим причинам, как объективного, так и субъективного характера, широкое развитие централизованных систем отопления в Советском Союзе началось в 20-х годах XX в. Объективными причинами стали экономические и технические доводы, а субъективными - стремление к коллективизму даже в такой сугубо бытовой области. Развитие теплосетей было связано с осуществлением плана ГОЭЛРО, который и по сегодняшний день считают выдающимся инженерно-экономическим проектом современности. Работа по прокладке коммуникаций не прерывалась даже во время Великой Отечественной войны.
В результате этих титанических усилий к концу XX в. (а заодно к закату существования СССР) в стране насчитывалось около 200 тыс. км тепловых сетей, худо-бедно обогревавших большинство крупных, средних и даже мелких городов и поселков. Вся эта инфраструктура довольно успешно управлялась, чинилась и поддерживалась на работоспособном уровне. Обратной же стороной по-своему уникальной и достаточно эффективной системы стали чрезвычайно высокие тепло- и энергопотери (в основном, за счет недостаточной теплоизоляции труб и энергоемких насосных подстанций). Этому не придавалось большого значения - богатейшая энергоресурсами страна не считала затрат на теплоносители, и исходящие паром траншеи с зеленеющей травой были привычным зимним пейзажем по всему Советскому Союзу.
Все изменилось в начале 90-х годов. Гигант рухнул и помимо прочего погреб под руинами и жилищно-коммунальный комплекс, включающий в себя коммуникации центрального теплоснабжения. За 10 лет, прошедших с начала распада державы, сети, которые ремонтировались от случая к случаю, практически пришли в негодность. В результате, с начала нового тысячелетия на Россию обрушился целый ряд техногенных катастроф. Дальний Восток, Сибирь, Карелия, Ростов-на-Дону - география размороженных отопительных систем обширна. В отопительный сезон 2003-2004 гг. по самым скромным подсчетам без отопления в разгар зимы оказались более 300 тыс. человек. Фатальность ситуации в том, что количество аварий на теплоцентралях из-за прорыва труб, отказа изношенного до крайности и малоэффективного оборудования растет экспоненциально. Теплопотери на еще функционирующих теплопроводах составляют до 60%. Стоит учесть, что стоимость прокладки 1 км теплотрассы составляет около $300 тыс., при этом для того, чтобы ликвидировать существующий критический износ теплосетей, нужно заменить более 120 тыс. км трубопроводов!
В сложившейся ситуации стало ясно, что для выхода из этой чрезвычайно сложной ситуации потребуются системные решения, связанные не только с прямым вложением денег в «точечный» ремонт теплотрасс, но и с кардинальным пересмотром всей политики в отношении ЖКК в общем и централизованного отопления - в частности. Именно поэтому и возникли проекты по переходу коммунальной отрасли на системы индивидуальных котельных. Действительно, западный опыт (Италия, Германия) свидетельствовал, что организация таких мини-котельных снижает теплопотери и уменьшает энергозатраты. При этом, впрочем, игнорировался тот факт, что страны, где наиболее развиты такие системы отопления, обладают довольно мягким климатом, да и применяются такие системы в домах, прошедших дополнительное (и весьма недешевое!) переоборудование. Пока в России отсутствует конкретная целевая программа санации жилья, массовый переход на автономные источники теплоснабжения выглядит, по меньшей мере, утопично. Однако, надо признать, что в ряде случаев они могут стать весьма удачным решением: например при строительстве новых районов, удаленных от общих городских коммуникаций, при невозможности крупных земляных работ или на Крайнем Севере, в условиях вечной мерзлоты, где прокладка теплоцентралей нежелательна по целому ряду причин. Но для крупных городов автономные котельные не являются реальной альтернативой центральному отоплению и, по мнению специалистов, их доля при самых радужных перспективах не превысит 10-15% от общего теплопотребления.
В то время как в Центральной Европе активно лоббируют идею автономного теплоснабжения, в странах Северной Европы (где климат близок к нашему) централизованное теплоснабжение, наоборот, весьма развито. Причем, что интересно, во многом благодаря советскому опыту.
В крупных городах, таких как Хельсинки и Копенгаген, доля центрального отопления приближается к 90%. Может возникнуть вполне резонный вопрос: почему в России теплоцентрали - это головная боль коммунальщиков и населения и черная дыра, поглощающая деньги, а в развитых европейских странах - способ дешево и эффективно доставить тепло туда, где это необходимо?
Ответ на этот вопрос сложен и включает в себя много аспектов. Обобщая, можно сказать, следуя известной поговорке: дьявол сидит в деталях. А детали эти довольно просты: используя современное оборудование, можно добиться того, что теплопотери в центральных сетях сведутся к минимуму, а поскольку накладных расходов у большой ТЭЦ в пересчете на отапливаемую площадь меньше, то и стоимость тепловой единицы тоже ниже, чем у автономного пункта. Кроме того, крупная, хорошо оснащенная ТЭЦ создает меньше экологических проблем, чем несколько мелких, дающих суммарно то же количество тепла. Есть и еще один аспект: теплотехники знают, что только в крупных установках возможна реализация наиболее результативных термодинамических циклов для когенерации (совместного производства тепловой и электрической энергии), что является на сегодня наиболее передовой технологией. Все это и привело скандинавов к выбору в пользу централизованного теплоснабжения. Особенно интересен в этом контексте опыт самой энергоэффективной страны Европы - Дании.
К началу 90-х годов произошло смещение интересов государства и общества с вопросов энергонезависимости к социальным и экологическим аспектам. При этом приоритетом государственной политики стало правило «3Е», т.е. соблюдение баланса между экономическим развитием, энергетической безопасностью и экологической корректностью (Economic Development, Energy security, Environmental protection). Надо сказать, что Дания, наверное, единственная страна в мире, в которой за энергетику и экологическую обстановку отвечает одно ведомство - Министерство охраны окружающей среды и энергетики. В 1990 г. датский парламент принял план «Энергия 2000», предлагающий к 2005 г. снижение эмиссии СО2 в атмосферу на 20% (по сравнению с уровнем 1998 г.). Стоит сказать, что этот показатель был достигнут уже к 2000 г. во много благодаря последовательной политике, направленной на модернизацию и укрупнение существующих теплосетей. Уже к середине 90-х годов доля систем централизованного теплоснабжения составляла около 60% от общего потребления тепла (в крупных городах до 90%). К системе централизованного теплоснабжения подключено более 500 тыс. установок, обеспечивающих теплом более 1 млн зданий и промышленных сооружений. При этом потребление энергоресурсов на 1 м2 только за десятилетие с начала реформы 1973 г. (см. справку на полях «Опыт Дании») сократилось в 2 раза.
Экономичность датских сетей центрального теплоснабжения обуславливается низкими потерями в трубопроводах благодаря введению новых материалов и технологий: труб из полимеров (к примеру, разработки UPONOR), эффективной теплоизоляции и современного насосного оборудования. Дело в том, что в отличие от большинства стран в Дании работа систем централизованного теплоснабжения регулируется не изменением температуры теплоносителя, а изменением скорости циркуляции, автоматически подстраивающейся под спрос потребителей. При этом широко распространено применение насосов с частотным регулированием, позволяющих значительно снизить энергопотребление. В этой нише лидирующее положение занимает насосное оборудование концерна GRUNDFOS: его использование позволяет сэкономить до 50% потребляемого насосами электричества.
Благодаря перечисленному комплексу инноваций, теплопотери магистральных и распределительных трубопроводов Дании составляют всего около 4%, при этом КПД ТЭЦ достигает 90%. На сегодня в стране осталось 170 тыс. зданий (из общего количества в 2,5 млн), не подключенных к централизованному теплоснабжению. Большая их часть должна в ближайшее время перейти на централизованное теплоснабжение.
В Дании законодательно закреплено, что местные власти несут ответственность за выполнение программ тепло- и энергосбережения и гарантируют экологическую и экономическую их корректность. Это в целом по стране привело к тому, что почти все новые здания проектируются с учетом подключения к централизованному теплоснабжению. Системы централизованного теплоснабжения используются повсеместно в районах плотной застройки, причем ТЭЦ, использующие когенерацию энергии, составляют большинство среди энергопроизводящих предприятий.
В результате этих реформ за 30 лет Дания стала самой энергоэффективной страной Европы, где тарифы на тепло и электроэнергию не только не растут, но часто снижаются. При этом экологическая обстановка в целом по стране явно улучшилась.
На этом убедительном примере отчетливо видно, что централизованное теплоснабжение отнюдь не является фактором, сдерживающим развитие ЖКК. Более того, централизованное теплоснабжение стало причиной значительной экономии энергии и тепла и улучшения как качества жизни, так и экологической обстановки.
Можно возразить, что опыт Дании неприменим в нашей обремененной множеством проблем стране. Однако начавшаяся реформа коммунального комплекса должна способствовать привлечению инвестиций в эту сферу хозяйственной деятельности и этими вливаниями надо распорядиться по возможности разумно. Тем более, что и в России уже существует положительный опыт реконструкции центрального теплоснабжения, использующий в т.ч. и опыт Дании в этой области. К примеру, в Ижевске на средства кредита Международного Банка Реконструкции и Развития в рамках оздоровления коммунального хозяйства была проведена санация изношенных теплосетей. Проект включал в себя в том числе и модернизацию нескольких десятков квартальных ИТП и внутриквартальных сетей тепло- и водоснабжения. При этом была произведена полная замена теплообменников на современные пластинчатые модели, КПД которых около 98%, высокоэффективное регулирующее и насосное оборудование. В обновляемых системах были установлены новые сетевые насосы GRUNDFOS серии ТР, циркуляционные насосы систем отопления и насосы CRE с частотно-регулируемым электроприводом для системы горячего водоснабжения. Надо сказать, что благодаря экономии электроэнергии это оборудование окупило себя уже через 2 года эксплуатации, при этом система была полностью автоматизирована. Одновременно проводилась модернизация теплосетей с применением современных пластиковых предизолированных труб и эффективной теплоизоляции, что позволило снизить теплопотери в трубопроводах в 2-3 раза и увеличить срок службы труб за счет многократного замедления коррозии.
В результате была получена обновленная эффективная система централизованного отопления и ГВС, при этом выплаты по кредиту не легли тяжким бременем на бюджет, поскольку экономия тепла и энергии оказалась столь значительной, что с лихвой окупала эти издержки.
Таким образом, дискуссии о целесообразности модернизации и развития существующих систем центрального теплоснабжения или тотальной замены их на автономные тепловые пункты, крышные котельные и поквартирное отопление стоит отвлечься от политических аспектов и обратить внимание на опыт развитых и успешных стран. А он показывает, что в сложном комплексе жилищно-коммунального хозяйства не существует единых решений на все случаи жизни, и не стоит отказываться от давно проверенных временем и практикой схем, подчиняясь только веяниям моды. Зарубежный опыт показал, что при использовании современного оборудования и материалов реконструированное централизованное отопление в комплексе с другими техническими решениями (в т.ч. и индивидуальными системами теплоснабжения) может стать ключом к развитию новых энергосберегающих технологий и обновлению всего ЖКК.

по материалам журнала Еврострой.

Основное назначение любой системы теплоснабжения состоит в обеспечении потребителей необходимым количеством теплоты требуемого качества (т.е. теплоносителем требуемых параметров).

В зависимости от размещения источника теплоты по отношению к потребителям системы теплоснабжения разделяются на децентрализованные и централизованные.

Децентрализованные системы

В децентрализованных системах источник теплоты и теплоприемники потребителей либо совмещены в одном агрегате, либо размещены столь близко, что передача теплоты от источника до теплоприемников может осуществляться практически без промежуточного звена – тепловой сети.

Системы децентрализованного теплоснабжения разделяются на индивидуальные и местные.

В индивидуальных системах теплоснабжение каждого помещения (участка цеха, комнаты, квартиры) обеспечивается от отдельного источника. К таким системам, в частности, относятся печное и поквартирное отопление. В местных системах теплоснабжение каждого здания обеспечивается от отдельного источника теплоты, обычно от местной или индивидуальной котельной. К этой системе, в частности, относится так называемое центральное отопление зданий.

Централизованные системы

В системах централизованного теплоснабжения источник теплоты и теплоприемники потребителей размещены раздельно, часто на значительном расстоянии, поэтому теплота от источника до потребителей передается по тепловым сетям.

В зависимости от степени централизации системы централизованного теплоснабжения можно разделить на следующие четыре группы:

  • групповое – теплоснабжение от одного источника группы зданий;
  • районное – теплоснабжение от одного источника нескольких групп зданий (района);
  • городское – теплоснабжение от одного источника нескольких районов;
  • межгородское – теплоснабжение от одного источника нескольких городов.

Процесс централизованного теплоснабжения состоит из трех последовательных операций: подготовки теплоносителя, транспортировки теплоносителя и использования теплоносителя.

Транспортируется теплоноситель по тепловым сетям. Используется теплоноситель в теплоприемниках потребителей. Комплекс установок, предназначенных для подготовки, транспортировки и использования теплоносителя, составляет систему централизованного теплоснабжения. Для транспорта теплоты применяются, как правило, два теплоносителя: вода и водяной пар. Для удовлетворения сезонной нагрузки и нагрузки горячего водоснабжения в качестве теплоносителя используется обычно вода, для промышленной технологической нагрузки – пар.

Выбор системы теплоснабжения объекта производится на основании утвержденной в установленном порядке схемы теплоснабжения.

Водяные системы

Водяные системы теплоснабжения применяются двух типов: закрытые (замкнутые) и открытые (разомкнутые). В закрытых системах сетевая вода, циркулирующая в тепловой сети, используется только как теплоноситель, но из сети не отбирается.

В открытых системах сетевая вода частично (редко полностью) разбирается у абонентов для горячего водоснабжения.

В зависимости от числа трубопроводов, используемых для теплоснабжения данной группы потребителей, водяные системы делятся на одно-, двух-, трех- и многотрубные. Минимальное число трубопроводов для открытой системы один, а для закрытой системы - два.

Наиболее простой и перспективной для транспорта на большие расстояния является однотрубная бессливная система теплоснабжения. Ее можно применить в том случае, когда обеспечивается равенство расходов сетевой воды, требуемых для удовлетворения отопительно-вентиляционной нагрузки и для горячего водоснабжения абонентов данного города или района.

Для теплоснабжения городов в большинстве случаев применяются двухтрубные водяные системы, в которых тепловая сеть состоит из двух трубопроводов: подающего и обратного. По подающему трубопроводу горячая вода подводится от станции к абонентам, по обратному трубопроводу охлажденная вода возвращается на станцию.

Преимущественное применение в городах двухтрубных систем объясняется тем, что эти системы по сравнению с многотрубными требуют меньших начальных вложений и дешевле в эксплуатации. Двухтрубные системы применимы в тех случаях, когда всем потребителям района требуется теплота примерно одного потенциала. Такие условия обычно имеют место в городах, где вся тепловая нагрузка (отопление, вентиляция и горячее водоснабжение) может быть удовлетворена в основном теплотой низкого потенциала.

В промышленных районах, где имеется технологическая тепловая нагрузка повышенного потенциала, могут применяться трехтрубные системы, в которых два трубопровода используются как подающие, а третий трубопровод является обратным. К каждому подающему трубопроводу присоединяются однородные по потенциалу и режиму тепловые нагрузки. В промышленных районах обычно к одному подающему.

Число параллельных трубопроводов в закрытой системе должно быть не меньше двух, так как после отдачи теплоты в абонентских установках теплоноситель должен быть возвращен на станцию. В зависимости от характера тепловых нагрузок абонента и режима работы тепловой сети выбираются схемы присоединения абонентских установок к тепловой сети.

В закрытых системах теплоснабжения установки горячего водоснабжения присоединяются к тепловой сети только через водо-водяные подогреватели, т.е. по независимой схеме. При зависимых схемах присоединения давление в абонентской установке зависит от давления в тепловой сети. При независимых схемах присоединения давление в местной системе не зависит от давления в тепловой сети.

Оборудование абонентского ввода при зависимой схеме присоединения проще и дешевле, чем при независимой, при этом может быть получен несколько больший перепад температур сетевой воды в абонентской установке. Увеличение перепада температур воды уменьшает расход теплоносителя в сети, что может привести к снижению диаметров сети и экономии на начальной стоимости тепловой сети и на эксплуатационных расходах.

Основным недостатком зависимой схемы присоединения является жесткая гидравлическая связь тепловой сети с нагревательными приборами абонентских установок, имеющими, как правило, пониженную механическую прочность, что ограничивает пределы допускаемых режимов работы системы централизованного теплоснабжения. Так, в широко применявшихся в отопительной технике чугунных нагревательных приборах (радиаторах) допустимое давление не превышает 0.6 МПа; превышение указанного предела может привести к авариям в отопительных установках. Это существенно снижает надежность и усложняет эксплуатацию систем теплоснабжения крупных городов, Так как при большой протяженности тепловых сетей и большом числе присоединенных абонентских установок с разнородной тепловой нагрузкой расходы воды в сети и связанные с ними потери давления могут изменяться в широких пределах. При этом уровень давлений в сети может превысить предел, допустимый для абонентских установок.

В тех случаях, когда разность между допустимым давлением в теплопотребляющих приборах абонентов и расчетным давлением в тепловой сети невелика, даже небольшие повышения давления в тепловой сети, вызванные, например, аварийным отключением насоса на подстанции или непроизвольным перекрытием клапана в сети, могут привести к разрыву приборов в отопительных установках абонентов. Кроме того, при независимой схеме снижаются утечки сетевой воды и легче обнаружить возникающие в процессе эксплуатации повреждения в системе теплоснабжения. Поэтому по условиям надежности работы систем теплоснабжения крупных городов независимая схема присоединения более предпочтительна. В тех же случаях, когда давление в тепловой сети в статических условиях превышает допустимый уровень давлений в абонентских установках, применение независимой схемы присоединения является обязательным независимо от размеров системы централизованного теплоснабжения.

Непосредственный водоразбор сетевой воды у потребителей в закрытых системах теплоснабжения не допускается.

В открытых системах теплоснабжения подключение части потребителей горячего водоснабжения через водо-водяные теплообменники на тепловых пунктах абонентов (по закрытой системе) допускается как временное при условии обеспечения (сохранения) качества сетевой воды согласно требованиям действующих нормативных документов.

Паровые системы

Паровые системы сооружаются двух типов: с возвратом конденсата, без возврата конденсата. В практике промышленной теплофикации широко применяется однотрубная паровая система с возвратом конденсата. Пар из отбора турбины поступает в однотрубную паровую сеть и транспортируется по ней к тепловым потребителям. Конденсат возвращается от потребителей на станцию по конденсатопроводу. На случай остановки турбины или недостаточной мощности отбора предусмптривается резервная подача пара в сеть через редукционно-охладительную установку.

Схемы присоединений абонентских установок к паровой сети зависят от конструкции этих установок. Если пар может быть пущен непосредственно в установку абонента, то присоединение производится по зависимой схеме. Сбор конденсата от теплопотребляющих установок и возврат его к источнику теплоты имеют важное значение не только для надежности работы котельных установок современных теплоэлектроцентралей, но и для экономии теплоты и общей экономичности системы теплоснабжения в целом. Возврат конденсата особенно важен для ТЭЦ с высокими и сверхкритическими начальными параметрами (13 МПа и выше).