20.03.2019

Воздействие электрической дуги. Образование и свойства дуги


Если говорить о характеристиках вольтовой дуги, то стоит упомянуть, что она отличается более низким напряжением, чем тлеющий разряд, и полагается на термоэлектронное излучение электронов от электродов, поддерживающих дугу. В англоязычных странах этот термин считается архаичным и устаревшим.

Методы подавления дуги можно использовать для уменьшения ее продолжительности или вероятности образования.

В конце 1800-х годов вольтова дуга широко использовалась для общественного освещения. Некоторые электрические дуги низкого давления используются во многих приложениях. Например, для освещения применяются люминесцентные лампы, ртутные, натриевые и металлогалогенные лампы. Ксеноновые дуговые лампы использовались для кинопроекторов.

Открытие вольтовой дуги

Считается, что это явление впервые было описано сэром Хамфри Дэви в статье 1801 года, опубликованной в Journal of Natural Philosophy, Chemistry and Arts Уильяма Николсона. Однако явление, описанное Дэви, не было электрической дугой, но лишь искрой. Поздние исследователи писали: «Это, очевидно, описание не дуги, а искры. Суть первой заключается в том, что она должна быть непрерывной, и ее полюса не должны соприкасаться после того, как она возникла. Искра, созданная сэром Хамфри Дэви, была явно не непрерывной, и хотя в течение некоторого времени после контакта с атомами углерода оставалась заряженной, скорее всего не было соединения дуги, которое необходимо для ее классификации как вольтовой».

В том же году Дэви публично продемонстрировал эффект перед Королевским обществом, передав электрический ток через два соприкасающихся угольных стержня, а затем оттянув их на небольшое расстояние друг от друга. Демонстрация показала «слабую» дугу, с трудом отличимую от устойчивой искры, между точками древесного угля. Научное сообщество предоставило ему более мощную батарею из 1000 пластин, и в 1808 году он продемонстрировал возникновение вольтовой дуги в крупных масштабах. Ему также приписывают ее название на английском языке (electric arc). Он назвал ее дугой, потому что она принимает форму восходящего лука, когда расстояние между электродами становится близким. Это связано с проводящими свойствами раскаленного газа.

Как появилась вольтова дуга? Первая непрерывная дуга была зафиксирована независимо в 1802 г. и описана в 1803 г. как «специальная жидкость с электрическими свойствами» русским ученым Василием Петровым, экспериментирующий с медно-цинковой батареей, состоящей из 4200 дисков.

Дальнейшее изучение

В конце девятнадцатого века вольтова дуга широко использовалась для общественного освещения. Тенденция электрических дуг к мерцанию и шипению была серьезной проблемой. В 1895 году Герта Маркс Айртон написала серию статей об электричестве, объяснив, что вольтова дуга была результатом контакта кислорода с углеродными стержнями, используемыми для создания дуги.

В 1899 году она была первой женщиной, когда-либо читавшей свой собственный доклад перед Институтом инженеров-электриков (IEE). Ее доклад был озаглавлен как «Механизм электрической дуги». Вскоре после этого Айртон была избрана первой женщиной-членом Института инженеров-электриков. Следующая женщина была принята в институт аж в 1958 году. Айртон подала прошение прочесть доклад перед Королевским научным обществом, но ей не разрешили сделать этого из-за ее пола, и «Механизм электрической дуги» был прочитан Джоном Перри вместо нее в 1901 году.

Описание

Электрическая дуга представляет собой вид с наибольшей плотностью тока. Максимальная сила тока, проводимого по дуге, ограничена только внешней средой, а не самой дугой.

Дуга между двумя электродами может быть инициирована ионизацией и тлеющим разрядом, когда ток через электроды увеличивается. Пробивное напряжение электродного зазора представляет собой комбинированную функцию давления, расстояния между электродами и типа газа, окружающего электроды. Когда начинается дуга, ее напряжение на клеммах намного меньше, чем у тлеющего разряда, а ток выше. Дуга в газах вблизи атмосферного давления характеризуется видимым светом, высокой плотностью тока и высокой температурой. Она отличается от тлеющего разряда примерно одинаковыми эффективными температурами как электронов, так и положительных ионов, и в тлеющем разряде ионы имеют гораздо меньшую тепловую энергию, чем электроны.

При сваривании

Вытянутая дуга может быть инициирована двумя электродами, первоначально находящимися в контакте и разнесенными в процессе эксперимента. Это действие может инициировать дугу без высоковольтного тлеющего разряда. Это способ, которым сварщик начинает сваривать соединение, мгновенно прикасаясь сварочным электродом к предмету.

Другим примером является разделение электрических контактов на переключателях, реле или автоматических выключателях. В высокоэнергетических схемах может потребоваться подавление дуги, чтобы предотвратить повреждение контактов.

Вольтова дуга: характеристики

Электрическое сопротивление вдоль непрерывной дуги создает тепло, которое ионизует больше молекул газа (где степень ионизации определяется температурой), и в соответствии с этой последовательностью газ постепенно превращается в тепловую плазму, которая находится в тепловом равновесии, поскольку температура относительно однородно распределяется по всем атомам, молекулам, ионам и электронам. Энергия, передаваемая электронами, быстро диспергируется с более тяжелыми частицами за счет упругих столкновений из-за их большой подвижности и больших чисел.

Ток в дуге поддерживается термоэлектронной и полевой эмиссией электронов на катоде. Ток может быть сконцентрирован в очень малой горячей точке на катоде - порядка миллиона ампер на квадратный сантиметр. В отличие от тлеющего разряда, дуга имеет мало различимую структуру, поскольку положительный столбец достаточно яркий и простирается почти до электродов с обоих концов. Падение катода и падение анода в несколько вольт происходит в пределах доли миллиметра каждого электрода. Положительный столбец имеет более низкий градиент напряжения и может отсутствовать в очень коротких дугах.

Низкочастотная дуга

Низкочастотная (менее 100 Гц) дуга переменного тока напоминает дугу постоянного тока. На каждом цикле дуга инициируется пробоем, и электроды меняют роли, когда ток меняет направление. По мере увеличения частоты тока не хватает времени для ионизации при расхождении на каждом полупериоде, и пробой больше не нужен для поддержания дуги - характеристика напряжения и тока становится более омической.

Место среди прочих физических явлений

Различные формы электрических дуг являются возникающими свойствами нелинейных моделей тока и электрического поля. Дуга встречается в заполненном газом пространстве между двумя проводящими электродами (часто из вольфрама или углерода), что приводит к возникновению очень высокой температуры, способной плавить или испарять большинство материалов. Электрическая дуга представляет собой непрерывный разряд, в то время как аналогичный электрический искровой разряд является мгновенным. Вольтова дуга может возникать либо в цепях постоянного тока, либо в цепях переменного. В последнем случае она может повторно ударяться о каждом полупериоде возникновения тока. Электрическая дуга отличается от тлеющего разряда тем, что плотность тока довольно велика, а падение напряжения внутри дуги низкое. На катоде плотность тока может достигать одного мегаампера на квадратный сантиметр.

Разрушительный потенциал

Электрическая дуга имеет нелинейную зависимость между током и напряжением. Как только дуга будет создана ​​(либо путем прогрессирования из тлеющего разряда, либо путем мгновенного касания электродов, а затем разделения их), увеличение тока приводит к более низкому напряжению между дуговыми терминалами. Этот эффект отрицательного сопротивления требует, чтобы какая-то положительная форма импеданса (как электрического балласта) была помещена в цепь для поддержания стабильной дуги. Это свойство является причиной того, что неконтролируемые электрические дуги в аппарате становятся настолько разрушительными, ведь после своего возникновения дуга будет потреблять все больше тока от источника постоянного напряжения до тех пор, пока устройство не будет уничтожено.

Практическое применение

В промышленном масштабе электрические дуги используются для сварки, плазменной резки, механической обработки электрическим разрядом, в качестве дуговой лампы в кинопроекторах и в освещении. Электродуговые печи используются для производства стали и других веществ. Карбид кальция получают именно таким образом, поскольку для достижения эндотермической реакции (при температурах 2500 °С) требуется большое количество энергии.

Углеродистые дуговые огни были первыми электрическими огнями. Они использовались для уличных фонарей в XIX веке и для создания специализированных устройств, таких как прожекторы, до Второй мировой войны. Сегодня электрические дуги низкого давления используются во многих областях. Например, для освещения используются люминесцентные лампы, ртутные, натриевые и металлогалогенные лампы, а ксеноновые дуговые лампы используются для кинопроекторов.

Формирование интенсивной электрической дуги, подобно мелкомасштабной дуговой вспышке, является основой взрывоопасных детонаторов. Когда ученые узнали, что такое вольтова дуга и как ее можно использовать, разнообразие мирового вооружения пополнилось эффективной взрывчаткой.

Основным оставшимся применением является высоковольтное распределительное устройство для сетей передачи. Современные устройства также используют гексафторид серы под высоким давлением.

Заключение

Несмотря на частоту ожогов вольтовой дугой, она считается очень полезным физическим явлением, до сих пор широко использующимся в промышленности, производстве и создании декоративных предметов. Она обладает своей эстетикой, и ее образ часто мелькает в научно-фантастических фильмах. Поражение вольтовой дугой не является смертельным.

В современной промышленности сварка имеет большое значение, она имеет очень широкую область применения во всех отраслях промышленности. Для осуществления сварочного процесса необходима сварочная дуга.

Что такое сварочная дуга, ее определение

Сварочной дугой считается очень большой по величине мощности и длительности электрический разряд, который существует между электродами, на которые подано напряжение, в смеси газов. Ее свойства отличаются высокой температурой и плотностью тока, благодаря которым она способна расплавлять металлы, имеющие температуру плавления выше 3000 градусов. Вообще можно сказать, что электрическая дуга – это проводник из газа, который преобразует электрическую энергию в тепловую. Электрическим зарядом называется прохождение электрического тока через газовую среду.

Существует несколько видов электрического разряда:

  • Тлеющий разряд. Возникает в низком давлении, применяется в люминесцентных лампах и плазменных экранах;
  • Искровой разряд. Возникает, когда давление равно атмосферному, отличается прерывистой формой. Искровому разряду соответствует молния, также применяется для зажигания двигателей внутреннего сгорания;
  • Дуговой разряд. Применяет при сварке и для освещения. Отличается непрерывистой формой, возникает при атмосферном давлении;
  • Коронный. Возникает, когда тело электрода шероховато и неоднородно, второй электрод может отсутствовать, то есть возникает струя. Применяется для очистки газов от пыли;

Природа и строение

Природа сварочной дуги не так уж и сложна, как может показаться на первый взгляд. Электрический ток, проходя через катод, затем проникает в ионизированный газ, происходит разряд с ярким свечением и очень высокой температурой, поэтому температура электрической дуги может достигать 7000 – 10000 градусов. После этого ток перетекает на обрабатываемый свариваемый материал. Так как температура настолько высока дуга выделяет вредное для человеческого организма ультрафиолетовое и инфракрасное излучения, оно может навредить глазам или оставить световые ожоги на коже, поэтому при проведении сварочного процесса необходима надлежащая защита.

Строение сварочной дуги представляет собой три главные области: анодная, катодная и столб дуги. Во время горения дуги на катоде и аноде образуются активные пятна – области, в которых температура достигает самых высоких значений, именно через данные области проходит весь электрический ток, анодные и катодные области представляют собой более большие падения напряжения. А сам столб располагается между этими областями падение напряжения в столбе очень незначительно. Таким образом, длина сварочной дуги представляет собой сумму вышеперечисленных областей, обычно длина равна нескольким миллиметрам, когда анодные и катодные области, соответственно, равны 10-4 и 10-5 см. Самая благоприятная длина примерно равна 4-6мм, при такой длине обеспечивается постоянная и благоприятная температура.

Разновидности

Виды сварочной дуги отличаются схемой подвода сварочного тока и средой, в которой они возникают, наиболее распространенными вариантами являются:

  • Прямое действие. При таком способе сварочный располагается параллельно свариваемой металлической конструкции и дуга возникает под углом девяносто градусов по отношению к электроду и металлу;
  • Сварочная дуга косвенного действия. Возникает, когда используется два электрода, которые располагаются под углом 40-60 градусов к поверхности свариваемой детали, дуга возникает между электродами и сваривает металл;

Также существует классификация в зависимости от атмосферы, в которой они возникают:

  • Открытый тип. Дуга данного типа горит на воздухе и вокруг нее образовывается газовая фаза, содержащая пары свариваемого материала, электродов и их покрытий;
  • Закрытый тип. Горение такой дуги происходит под слоем флюса, в газовую фазу, образовавшуюся вокруг дуги входят пары металла, электрода и флюса;
  • Дуга с подачей газов. В горящую дугу подаются сжатые газы – гелий, аргон, углекислый газ, водород и другие различные смеси газов, подаются они для того, чтобы не окислялся свариваемый металл, их подача способствует восстановительной или нейтральной среде. В газовую фазу вокруг дуги входят – подающийся газ, пары металла и электрода;

Также различают по длительности действия – стационарная (для долгого применения) и импульсная (для однократного), по материалу используемого электрода – угольные, вольфрамовые – неплавящиеся электроды и металлические – плавящиеся. Самый распространенный плавящийся электрод – стальной. На сегодняшний день наиболее часто применяется сварка с неплавящимся электродом. Таким образом, виды сварочных дуг разнообразны.

Условия горения

При стандартных условиях, то есть температуре в 25 градусов и давлении в 1 атмосферу газы не способны проводить электрический ток. Для того, чтобы образовалась дуга необходимо, чтобы газы между электродами были ионизированы, то есть имели в своем составе различные заряженные частицы – электроны или ионы (катионы или анионы). Процесс образования ионизированного газа будет называться ионизацией, а работа, которую необходимо затратить на отрыв электрона у атомной частицы для образования электрона и иона – работой ионизации, которая измеряется в электрон-вольтах и называется потенциалом ионизации. Какую именно энергию необходимо затратить для отрыва электрона от атома зависит от природы газовой фазы, значения могут быть от 3,5 до 25 эВ. Самый маленький потенциал ионизации имеют металлы щелочной и щелочно-земельной группы – калий, кальций и, соответственно, их химический соединения. Такими соединениями покрывают электроды, для того, чтобы они способствовали устойчивому существованию и горению сварочной дуги.

Также для возникновения и горения дуги необходима постоянная температура на катод, которая зависит от природы катода, его диаметра, размера и температуры окружающей среды. Температура электрической дуги поэтому должна быть постоянной и не колебаться, благодаря огромным значениям силы тока температура может достигать 7 тысяч градусов, таким образом, сваркой можно присоединять абсолютно все материалы. Постоянная температура обеспечивается с помощью исправного источника питания, поэтому его выбор при конструировании сварочного аппарата очень важен, он оказывает влияние на свойства дуги.

Возникновение

Она возникает при быстром замыкании, то есть когда электрод соприкасается с поверхность свариваемого материала, из-за колоссальной температуры поверхность материала расплавляется, а между электродом и поверхность образуется небольшая полоса из расплавившегося материала. К моменту расхождения электрода и свариваемого материала образуется шейка из материала, которая моментально разрывается и испаряется из-за высокого значений плотности тока. Газ ионизируется и возникает электрическая дуга. Возбудить ее можно с помощью касания или чирканья.

Особенности

Она имеет следующие особенности по сравнению с другими электрическими зарядами:

  • Высокая плотность тока, которая достигает нескольких тысяч ампер на квадратный сантиметр, благодаря чему достигается очень высокая температура;
  • Неравномерность распределения электрического поля в пространстве между электродами. Вблизи электродов падение напряжения очень велико, когда в столбе – наоборот;
  • Огромная температура, которая достигает самых больших значений в столбе из-за высокой плотности тока. При увеличении длины столба температура уменьшается, а при сужении – наоборот увеличивается;
  • С помощью сварочных дуг можно получать самые различные вольт-амперные характеристики – зависимости падения напряжения от плотности тока при постоянной длине, то есть установившемся горении. На данный момент существует три вольтамперные характеристики.

Первая – падающая, когда при увеличении силы и,соответственно, плотности тока, напряжение падает. Вторая- жесткая, когда изменение силы тока никак не влияет на значение величины напряжения итретья – возрастающая, когда при увеличении силы тока напряжение также увеличивается.

Таким образом, сварочную дугу можно назвать самым лучшим и надежным способом скрепления металлических конструкций. Сварочный процесс оказывает большое влияние на сегодняшнюю промышленность, потому что только высокая температура сварочной дуги способна скреплять большинство металлов. Для получения качественных и надежных швов необходимо правильно и верно учитывать все характеристики дуги, следить за всеми значениями, благодаря этому процедура пройдет быстро и наиболее эффективно. Также необходимо учитывать свойства дуги: плотность тока, температуру и напряжение.

Электрическая дуга - один из видов электрического разряда в газах. Всякое направ­ленное движение заряженных частиц между электродами в газах называется разрядом. Ме­сто дуги среди других видов разрядов в газах:

Дуговой разряд отличается от других:

1 - высокой температурой 4000 - 50 ООО К

2 - высокой силой тока 50-10 000 А

3 - слабым электрическим полем 10 - 60 В.

Называется дугой из-за характерной формы, которая возникает от взаимодействия за­ряженных частиц дуги с магнитным полем самой дуги. При увеличении тока магнитное поле может разрывать дуговой разряд

Ток в дуговом процессе протекает между электродами (полюсами дуги) через газ дуго­вого пространства.

Положительный электрод - анод.

Отрицательный электрод - катод

Различают дугу свободную (свободно расширяющуюся) и сжатую. Свободной (свобод­но расширяющейся) называется дуга оадиус которой, не ограничен ни в одном её сечении;

сжатой называется дуга радиус которой, ограничен хотя бы в одном сечении.

Распределение падения напряжения в дуге. В межэлектродном пространстве на­блюдается неравномерное распределение электрического поля (скачки потенциала в при - электродных областях) и в соответствии с зтим неравномерно падение напряжения по длине дуги.

Свободные электроны, которые есть в металлах под действием электрического поля при высокой температуре катода покидают его Потенциалом катодной области разгоняются и ионизуют атомы столба дуги Атомы столба могут ионизироваться и от высокой темпера­туры (соударением, фотоионизация) Электроны перемещаются в столбе дуги в сторону анода Приблизившись к аноду, попадают на него под действием электрического поля анод­ной области Ионы двигаются в противоположную сторону, бомбардируя катод

Сопротивление газового проводника является нелинейным и поэтому дуга не подчиня­ется Закону Ома

Статическая вольт-амперная характеристика дуги. В зависимости от плотности тока вольтамперная характеристика может быть падающей, пологой и возрастающей

При малых токах с увеличением тока интенсивно возрастает количество заряженных частиц, главным образом, из-за нагрева и увеличения эмиссии электронов с поверхности катода, а, значит, и соответствующего ей увеличения объемной ионизации в столбе дуги.

Сопротивление столба дуги при этом уменьшается и падает необходимое для поддержки разряда напряжение. Характе­ристика дуги - падающая.

При дальнейшем увеличении тока и ограниченном сечении электродов столб дуги немного сжимается и объем газа, ко­торый берет участие в переносе зарядов уменьшается. Это приводит к меньшей скорости роста числа заряженных частиц.

Напряжение дуги становится мало зависи­мым от тока. Характеристика - пологая.

В первых двух областях электрическое сопротивление дуги отрицательно (негативно). Эти области характерные для дуг со сравнительно малой плотностью тока. Дальнейший рост тока приводить к исчерпанию термоэмиссионной способности ка­тода. Количество заряженных частиц не увеличивается и сопротивление дуги становится положительным и почти постоянным. Появляется высокоионизованна» сжатая плазма, кото­рая по свойствам близка к металлическим проводникам. Такая дуга подчиняется закону Ома.

Энергетическая ёмкость различных областей дуги

Для приведенных цифр падение напряжения в областях дуги (дуга в парах железа) и характерных для ручной дуговой сварки значений тока:

В катодной области 14Вх100А=1,4 кВт на длине *10"5 см

В столбе дуги 25 В/см х 0,6 см х 100 А = 1,5 кВт на длине ^0.6 см

В анодной области 2,5 В х 100 А = 250 Вт на длине ^Ю"4 см.

Основные потребители энергии - катодная область и столб дуги, очевидно, что в них и происходят основные процессы, которые характеризуют физические явление, результатом которых является дуговой разряд.

При постоянных диаметрах электрода и расстояниях между ними электрические пара­метры дуги будут зависеть от материала электродов (эмиссия, пары металлов в столбе), состава газов в дуге, температуры электродов, состава газа в дуге (в столбе дуги).

То есть, электрические параметры дуги зависят от физических и геометрических фак­торов. Изменение размеров электродов и расстояния между ними влияет на электрические характеристики дуги

Сварочные дуги подразделяют (классифицируют):

По материалам электродов (Fe, W, Си и т. д.)

По составу газов (в воздухе, в парах металлов, в потоке защитных газов;

Плавящимся или неплавящимся электродом и т. п.

Физические процессы в катодной области

Электроны покидают поверхность катода и двигаются к аноду. Путь, который они про­ходят до первого столкновения с атомами газов дуги ограничивает катодную область. Рас­четы показывают, что это является * Ю"ь см для нормального давления и дуги в воздухе и в парах железа.

К катодной области принято относить эту область дуги (1C)"5 см) и саму поверхност­ность катода.

1) Общий электрический ток в катодной области состоит из электронного и ионного тока

Плотность тока (А/см2):

I = eo-rvWe’i© = e0n©W&

е0 - заряд электрона;

л© - количество электронов;

W© - скорость движения (дрейфа) электронов.

Если предположить равенство ппотности то­ков ионного и электронного (на самом I, > 1в), то

Ионы и электроны, которые проходят катодную область, накапливают кинетическую энергию:

Р _ П1фУф - _ тсЛЧэ.

где те, т© - соответствующие массы.

Поскольку они разгоняются электрическим полем, то энергия, которую они получают, будет Єо-ІЛ (произведение зарядов на разницу потенциалов):

Еф = Ее=Єо. ик

тогда скорости движения заряженных частиц:

w* = ; we = №., тогда

пе _ W9 _ у гпе _ I гп(

Масса электрона mQ, = 9,106-10"28 г

Масса протона mn = 1,66-10"24 г

1,66-10"24-55,84 _з19

Для иона железа AFe = 55,84; в этом случае:

о катод, отдают ему свою энергию, разогревая его, захватывают электрон, превращаясь в нейтральные атомы. Электроны из катода разгоняются до энергии eo U* ударяются в атомы столба дуги и ионизируют их.

Катодная эмиссия

Различают такие виды эмиссии электронов с поверхности катода:

Термоэлектронная;

Автоэлектронная (электростатическая);

Фотоэлектронная (внешний фотоэффект);

Вторичная (бомбардировка поверхности атомами, ионами, тяжелыми частицами, электронами и др.);

При сварке дуговыми способами наиболее часто встречается термо - и авто­электронная эмиссия.

Интенсивность эмиссии оценивают плотностью тока j [А/см2] (для сварки 102 ... 105 А/мм2).

Термоэлектронная эмиссия.

Свободным электронам, которые есть в твердом теле, не дает покинуть его электриче­ское поле - поверхностный потенциальный барьер.

Величина наименьшей энергии, которую необходимо придать электрону, чтобы он мог выйти из поверхности тела и удалиться на расстояние, при котором между ним и телом не­возможно взаимодействие называется работа выхода.

Всегда найдутся такие электроны, которые случайно наберут эту энергию и выйдут из тела. Но под действием электрического поля они сразу же возвращаются назад.

С ростом температуры тела количество электронов, которые имеют энергию, доста­точную для выхода из тела, увеличивается.

В электростатических расчетах работа выхода А* = е0 ф, где <р - потенциал выхода. Е0 = 1, А, = ф в эктрон-вольтах.

Плотность тока для термоэлектронной эмиссии определяется уравнением Ричардсона - Дештмена:

jT=AT2e“kf; jT = AT2e"^

А - постоянная, зависит от материала катода

Т - температура

к: - постоянная Больцмана к = 8,62 10‘5 эв/К = 1,38-10"23 ДжЖ

Ток термоэлектронной эмиссии оказывается на несколько порядков (в 100.... 10000 раз) меньше чем необходимый для катода при сварке, например, стали.

Но 8 катодной области есть объемный положи­тельный ионный заряд, который создает напряжен­ность поля 1-Ю6 В/см и больше. Электрическое по­ле такой напряженности изменяет условия эмиссии электронов из катода.

Работа выхода электронов уменьшается в со­ответствии с величиной напряженности поля в при - электродной (прикатодной) области. Это явление на­зывается эффект Шоттки. Работа выхода при нали­чии электрического поля е приповерхностной области катода уменьшается на величину: ДАв=е"2Е,/2 ДАВ =3,8-10“*Е

Е - напряженность электрического поляОсобую роль в объяснении явлений катодной эмиссии для аномально больших плот­ностей тока, характерных для сварки плавящимся электродом, играет электростатическая гипотеза (автоэлектронная эмиссия) Ленгмюра (1923 г). Поток электронов имеет волновые свойства Электрон - волна может проникнуть из катода в анод, не поднимаясь до потен­циального уровня, необходимого для эмиссии, а обходя его. Это называется туннельный переход Он происходит без расходования энергии.

При этом величина потенциального барьера должна быть меньше чем длина волны электрона в потоке. Длина волны потока электронов:

Ft - постоянная Планка ft =4,13-10"15 е-в с m - масса электрона V - скорость потока электронов.

у и в - константы, которые зависят от материала катода.

Фотоэмиссия (внешний фотоэффект, эффект Эйнштейна). При поглощении катодом квантов света могут появиться электроны, которые имеют энергию намного большую от ра­боты выхода. Условие возникновения фотоэмиссии (закон Эйнштейна)

Fi v £ ф + Уз mv2

fi - постоянная Планка F> = 6,626176 (36)- 10 м Дж-сек; v - частота световой волны;

m - масса электро. на

v - скорость электрона после эмиссии.

с - скорость светла в вакууме равна 299792458,0 (1,2) м/сек;

vo, *о - граничные частота и длина волны света, которые могут вызвать фотоэмиссию.

Смесь газов ионизуется иначе, чем каждый отдельный газ из-за того, что электронный газ, который создается в результате ионизации будет совместным для всех составных газо­вой смеси. Степень ионизации смеси:

■Л-тс п-д Р’

п - количество частиц;

S - диаметр взаимодействия частиц (диаметр Рамзауэра);

Р - внешнее давление.

Средняя квадратическая скорость определяется из средней энергии теплового движе­ния.

к - постоянная Больцмана.

Свободный пробег иона - X* свободный пробег нейтрального атома. Свободный пробег электрона Л*о * 4ІЛп (эффект Рамзауэра).

Расчёты показывают, что при массах иона железа и электрона: пір** = 56-1,66-1 O"2* г, me0 = 9,106 10’28 г,

соотношение их подвижностей составит:

Очевидно, что и ток ионный в 1830 раз меньше чем ток электронный. Из приведенных зависимостей с учетом давления подвижность электронов будет:

ь. =й-Ц-Ц - ■Jt ps

В = 3,62-10‘13 - безразмерная величина;

5 - диаметр взаимодействия частиц (Рамзауэра).

Скорость дрейфа электрона в столбе дуги:

В расчетах столб дуги принимаемая цилиндрическим по Форме, однородным с посто­янной по сечению плотностью тока - каналовая модель К. К. Хренова.

Длина столба дуги практически равняется длине дуги (в пределах 0.1 - 15 мм). Паде­ние напряжения в столбе дуги пропорционально длине столба:

Электрическое поле анода отбрасывает положительные ионы в столб дуги, вместо этого притягивая электроны. Создается объемный отрицательный заряд. Из поверхностного анода не происходит эмиссии положительных ионов (за случаем отдельных видов угольной дуги). В связи с этим ток анодной области - это чисто электронный ток га = /«<>.

Длина анодной области приблизительно равна длине свободного пробега электронов от последнего соударения с атомом. Объемный отрицательный заряд анодной области вы­зывает анодное падение напряжения, которое мало зависит от материала анода, газов дуги, тока через дугу и равняется 2 ... 3 В. Электрон, достигая анода, отдает ему свою кинетиче­скую энергию, а также работу выхода, которая была потрачена на отрыв электрона от като­да.

Вольт-амперная характеристика дуги, которая свободно расширяется (свободная)

Дуговой разряд - устойчивая система. При постоянном питании энергией поддержива­ет себя в широком интервале режимов. Всякое нарушения равновесия вызывает такое из­менение параметров дуги, чтобы дуговой процесс остался (не прерывался). Границы. в ко­торых возможны дуговые процессы и характер изменения параметров дуги в ответ на нару­шения равновесия, определяют вольт-амперные характеристики.

Статические -1 - ос; динамические -1 - 0.

Рассматривать будем статические характеристики столба дуги.

Предположения (Каналовая модель К. К. Хренова):

Рассматриваем устойчивый дуговой процесс. Энергия подводится в дугу в неограни-ченном количестве и как угодно длительное время. Никакие внешние факторы не влияют на диаметр дуги.

Во всех зонах дуги строго поддерживается термодинамическое равновесие. При этом дуговая плазма подчиняется закону Саха.

Столб дуги представляет собой цилиндр, поверхность которого резко отделяет плазму дуги с температурой Тд от окружающей среды Т = 0.

Все тепповые потери столба дуги это потери на излучение внешней цилиндрической оболочки дуги и подчиняются закону Стефана-Больцмана.

Принцип минимума Штейнбека.

В Дуге, которая свободно расширяется, физические процессы устанавливаются таким образом, чтобы £-> min.

При устойчивом дуговом процессе тепловые потери столба дуги являются минимально возмож­ными для данных условий. Для заданного состояния газовой фазы и постоянных 1Я и Р электрическое поле будет зависеть только от 1^.

1. При увеличении температуры столба от Т6 увеличивается степень ионизации, подвижность электронов, плотность тока, напряженность электри­ческого поля, одновременно увеличиваются и потери на излучение.

2. С уменьшением температуры столба от ТБ уменьшается степень ионизации, плотность тока, но увеличивается напряженность поля. Расходы энер­гии увеличиваются.

При условии отсутствия ограничений на диаметр дуги, дуга в широких пределах явля­ется саморегулируемой системой. В дуге автоматически поддерживается минимально воз­можная напряженность поля. То есть, при постоянных значениях физических параметров среды и Ід в дуге устанавливается такие значения Т^ и гст, при которых напряженность поля в столбе будет минимальной.

Баланс энергии в областях дуги

Баланс энергии в столбе дуги f - доля электронного тока, |а - сварочный ток.

Энергия источника (тепло Джоуля-Ленца, выделяемое на сопротивлении плазмы столба дуги проходящему току):

ист - падение напряжения на столбе дуги.

Ионизация нейтральных атомов:

Ц - потенциал ионизации газов дугового промежутка.

Тепловые потери на излучение - RCT

Тепловые потери на конвекцию - R^*,

Тепловые потери на диффузию, заря­женных частиц в окружающую среду - RAWt>

Тепловые потери на эндотермические химические реакции - RXMt

Уравнение баланса:

(1 - f)l*U* + (1- f)l*Ui+ 4г - Rem = f-lu

Q* + R* или, в упрощённой форме:

Q* = lc*(UK - <р)

отсюда вывод:

чем лучше эмиссия электронов с поверхности катода (чем меньше работа выхода <р) - тем больше теплоты выделяется на катоде. Опытные данные показывают:

причём: 2 - характерно для неплавящихся катодов;

10 - характерно для плавящихся катодов.

3. Баланс энергии на аноде.

Уравнение баланса:

Р + А ■ Rem - Qt + R*

или, в упрощённой форме:

Q« = l~(U, + <р)

Опытные данные показывают:

Сжатая дуга.

Радиус столба дуги гет есть, прежде всего, функция тока в дуге:

рі/2,2 3 гст = С2 -гг - д

ЬЗ,!9Л2 а0 Uj

С увеличением тока увеличивается радиус дуги.

drCT „ Р12 2,-13 . Р12 Дід

Ид Стд3и{912 3 ИЛИ 2а‘3и!9,2",Ц

Дгст - темп увеличения радиуса дуги.

Темп изменения радиуса столба дуги (Дгст - темп) зависит от абсолютного значения то­ка. При малых токах радиус чувствителен к изменению тока, при больших токах - мало чув­ствителен. Предельно, когда I» -*«, Дгет = 0.

Когда Дгст = const, ток дуги определяется плотностью тока "і"

I = ЛГап " Urn-

Дуга, которая имеет такие свойства, называется сжатой. Если радиус хотя бы в одном сечении является величиной постоянной^Д^га называется сжатой.

Граница перехода от свободной к сжатой дуге зависит от потенциала ионизации U,. При малой величине U, нужен большой ток для перехода в сжатую дугу. Ограничение радиу­са может быть по площади одного из электродов, или через увеличение теплоотдачи из бо­ковой поверхности столба. Обдувая дугу потоком холодного газа, можно перевести ее в сжа­тую при малых значениях тока.

В реальных условиях на величину прироста Дгет могут влиять:

1. Радиус электродов, между которыми горит дуга.

2. Потенциал ионизации газа, в котором горит дуга.

3. Теплоотдача с боковой поверхности столба дуги.

Способы получения сжатой дуги

Исходя из этого, есть такие способы получения сжатой дуги:

Ограничение диаметра хотя бы одного из электродов;

Обдув дуги газом с высоким потенциалом ионизации и высокой теплопроводностью (Аг. Не);

Внешнее продольное магнитное поле (в технике не применяется).

Общее описание вольт-амперной характеристики дуги, исходя из изложенного может быть выполнено следующим образом:

1) Свободная дуга (свободно расширяющаяся). Радиус столба дуги гст увеличивается с

ростом ток^Ід. Температура дуги остаётся постоянной Т = const, степень ионизации х - очень малая. Падающую характеристику имеют и столб дуги и катодная область.

2) Сжатая слабоионизированая дуга. Радиус столба дуги гет - не увеличивается с рос­том т. ока^начинает заметно увеличиваться степень ионизации х и температура стопба дуги Та. Столб дуги имеет еще падающую характеристику. Катодная область - возрастающую

3) Си^т^ в^юок£ионизированая дуга. Степень ионизации х-*1 ВАХ столба дуги и ка­тодной области - возрастающие. Процессы в дуге перестают зависеть от полярности, мате­риалов электродов и свойств газов столба дуги. Дуга становится обычным проводником на уровне металлов (при 10 ООО К удельное сопротивление р = 1,5-1 O"4 Ом см), превращаясь в высококонцентрированный весьма устойчивый источник сварочного нагрева

Электрическая дуга и её свойства

Наибольшее распространение в машиностроении получила электродуговая сварка. Рассмотрим подробнее особенности электродуговой сварки.

Электрической дугой называется продолжительный разряд электрического тока между двумя электродами, происходящий в газовой среде. Электрическая дуга, используемая для сварки металлов, называется сварочной дугой. Такая дуга в большинстве случаев горит между электродом и изделием, т.е. является дугой прямого действия.

Дуга прямого действия постоянного тока, горящая между металлическим электродом (катодом) и свариваемым металлом (анодом), имеет несколько ясно различимых областей (рис.2.3). Электропроводный газовый канал, соединяющий электроды, имеет форму усеченного конуса или цилиндра. Его свойства на различных расстояниях от электродов неодинаковы. Тонкие слои газа, примыкающие к электродам, имеют сравнительно низкую температуру. В зависимости от полярности электрода, к которому они примыкают, эти слои называются катодной 2 и анодной 4 областями дуги.

Протяженность катодной области l k определяется длиной свободного пробега нейтральных атомов и составляет

̃порядка 10 -5 см. Протяженность анодной области l a определяется длиной свободного пробега электрона и составляет примерно 10 -3 см. Между приэлектродными областями располагается наиболее протяженная, высокотемпературная область разряда - столб дуги l c 3.

На поверхности катода и анода образуются пятна, называемые, соответственно, катодное 1 и анодное 5 пятно, являющиеся основаниями столба дуги, через которые проходит весь сварочный ток. Электродные пятна выделяются яркостью свечения при сравнительно невысокой их температуре (2600... 3200 К). Температура в столбе дуги достигается 6000...8000 К.

Общая длина сварочной дуги l д равна сумме длин всех трех её областей (l д =l a +l k) и для реальных условий составляет 2...6 мм.

Общее напряжение сварочной дуги, соответственно, слагается из суммы падений напряжений в отдельных областях дуги и находится в пределах от 20 до 40 В. Зависимость напряжения в сварочной дуге от её длины описывается уравнением , где а - сумма падений напряжений в катодной и анодной областях, В; l д - длина столба дуги, мм; b - удельное падение напряжения в дуге, т.е. отнесенное к 1 мм длины столба дуги, В/мм.

Одной из основных характеристик электрического дугового разряда является статическая вольт-амперная характеристика - зависимость напряжения дуги при постоянной ее длине от силы тока в ней (рис.2.4).

С увеличением длины дуги напряжение увеличивается и кривая статической вольтамперной характеристики дуги поднимается выше, примерно сохраняя при этом свою форму (кривые, а, б, в). На ней различают три области: падающую I, жесткую (почти горизонтальную) II и возрастающую III. В зависимости от условий горения дуги ей соответствует один из участков характеристики. При ручной дуговой сварке покрытыми электродами, сварке в защитных газах неплавящимся электродом и сварке под флюсом на сравнительно небольших плотностях тока характеристика дуги будет вначале падающей, а при увеличении тока полностью перейдет в жесткую. При этом с увеличением сварочного тока пропорционально увеличиваются поперечное сечение столба дуги и площади поперечного сечения анодного и катодного пятен. Плотность тока и напряжение дуги остаются постоянными.

При сварке под флюсом и в защитных газах тонкой электродной проволокой на больших плотностях тока характеристика дуги становится возрастающей. Это объясняется тем, что диаметры катодного и анодного пятен становятся равными диаметру электрода и больше увеличиваться не могут. В дуговом промежутке наступает полная ионизация газовых молекул и дальнейшее увеличение сварочного тока может происходить лишь за счет увеличения скорости движения электронов и ионов, т. е. за счет увеличения напряженности электрического поля. Поэтому для дальнейшего увеличения сварочного тока требуется увеличение напряжения дуги.

Сварочная дуга представляет собой мощный концентрированный источник теплоты. Почти вся электрическая энергия, потребляемая дугой, превращается в тепловую. Полная тепловая мощность дуги Q=I св U д (Дж/с) зависит от силы сварочного тока I св (А) и напряжения дуги U д (В).

Следует отметить, что не вся теплота дуги затрачивается на нагрев и плавление металла. Часть её бесполезно расходуется на нагрев окружающего воздуха или защитного газа, радиационное излучение и т.д. В связи с этим эффективная тепловая мощность дуги q эф (Дж/с) (та часть теплоты сварочной дуги, которая вводится непосредственно в изделие) определяется следующим соотношением: где η - коэффициент полезного действия (КПД) процесса нагрева изделия сварочной дугой, определяемый опытным путем.

Коэффициент η зависит от способа сварки, материала электрода, состава покрытия или флюса и ряда других факторов. Например, при сварке открытой дугой угольным или вольфрамовых электродом он составляет в среднем 0,6; при сварке покрытыми (качественными) электродами - около 0,75; при сварке под флюсом - 0,8 и более.

Электрическая дуга – это мощный, длительно существующий между находящимися под напряжением электродами, электрический разряд в сильно ионизированной смеси газов и паров. Характеризуется высокой температурой газов и большим током в зоне разряда.

Электроды подключаются к источникам переменного (сварочный трансформатор) или постоянного тока (сварочный генератор или выпрямитель) при прямой и обратной полярности.

При сварке постоянным током электрод подсоединенный к положительному полюсу называется анодом, а к отрицательному – катодом. Промежуток между электродами называется областью дугового промежутка или дуговым промежутком (рисунок 3.4). Дуговой промежуток обычно разделяют на 3 характерные области:

  1. анодная область, примыкающая к аноду;
  2. катодная область;
  3. столб дуги.

Любое зажигание дуги начинается с короткого замыкания, т.е. с замыкания электрода с изделием. При этом U д = 0, а ток I max = I кор.замык. В месте замыкания появляется катодное пятно, которое является непременным (необходимым) условием существования дугового разряда. Образующийся жидкий металл при отводе электрода растягивается, перегревается и температура достигает, до температуры кипения – возбуждается (зажигается) дуга.

Зажигание дуги можно производить и без соприкосновения электродов за счет ионизации, т.е. пробоя диэлектрического воздушного (газового) промежутка за счет повышения напряжения осцилляторами (аргонодуговая сварка).

Дуговой промежуток является диэлектрической средой, которое необходимо ионизировать.

Для существования дугового разряда достаточно U д = 16÷60 В. Прохождение электрического тока через воздушный (дуговой) промежуток возможно только при наличии в нем электронов (элементарных отрицательных частиц) и ионов: положительные (+) ионы – все молекулы и атомы элементов (легче образуют металлы Ме); отрицательные (–) ионы – легче образуют F, Cr, N 2 , O 2 и другие элементы обладающие сродством к электронам е.

Рисунок 3.4 – Схема горения дуги

Катодная область дуги является источником электронов, ионизирующих газы в дуговом промежутке. Электроны выделившиеся из катода ускоряются электрическим полем и удаляются от катода. Одновременно под воздействием этого поля к катоду направляются +ионы:

U д = U к + U с + U а;

Анодная область имеет значительно больший объем U a < U к.

Столб дуги – основная доля дугового промежутка представляет смесь электронов, + и – ионов и нейтральных атомов (молекул). Столб дуги нейтрален:

∑зар.отр. = ∑зарядов положит.частиц.

Энергия для поддержания стационарной дуги поступает от источника питания ИП.

Разная температура, размеров анодных и катодных зон и разное количество тепла выделяющейся – обуславливает существование при сварке на постоянном токе прямой и обратной полярности:

Q a > Q к; U a < U к.

  • при требовании большого количества тепла для прогрева кромок больших толщин металла применяется прямая полярность (например, при наплавке);
  • при тонкостенных и не допускающих перегрева свариваемых металлов обратная полярность (+ на электроде).