20.09.2019

Тлеющий газовый разряд применяют. Дуговой разряд. Тлеющий разряд. Коронный разряд. Искровой разряд


Тлеющий разряд наблюдается в газах при низких давлениях порядка нескольких десятков миллиметров ртутного столба и меньше. Если рассмотреть трубку с тлеющим разрядом, то можно увидеть, что основными частями тлеющего разряда являются катодное темное пространство, резко отдаленное от него отрицательное, или тлеющее свечение, которое постепенно переходит в область фарадеева темного пространства. Эти три области образуют катодную часть разряда, за которой следует основная светящаяся часть разряда, определяющая его оптические свойства и называемая положительным столбом.

Основную роль в поддержании тлеющего разряда играют первые две области его катодной части. Характерной особенностью этого типа разряда является резкое падение потенциала вблизи катода, которое связано с большой концентрацией положительных ионов на границе I и II областей, обусловленной сравнительно малой скоростью движения ионов у катоду. В катодном темном пространстве происходит сильное ускорение электронов и положительных ионов, выбивающих электроны из катода. В области тлеющего свечения электроны производят интенсивную ударную ионизацию молекул газа и теряют свою энергию. Здесь образуются положительные ионы, необходимые для поддержания разряда. Напряженность электрического поля в этой области мала. Тлеющее свечение в основном вызывается рекомбинацией ионов и электронов. Протяженность катодного темного пространства определяется свойствами газа и материала катода.

В области положительного столба концентрация электронов и ионов приблизительно одинакова и очень велика, что обуславливает большую электропроводность положительного столба и незначительное падение в нем потенциала. Свечение положительного столба определяется свечением возбужденных молекул газа. Вблизи анода вновь наблюдается сравнительно резкое изменение потенциала, связанное с процессом генерации положительных ионов. В ряде случаев положительный столб распадается на отдельные светящиеся участки - страты, разделенные темными промежутками.

Положительный столб не играет существенной роли в поддержании тлеющего разряда, поэтому при уменьшении расстояния между электродами трубки длина положительного столба сокращается и он может исчезнуть совсем. Иначе обстоит дело с длиной катодного темного пространства, которая при сближении электродов не изменяется. Если электроды сблизились настолько, что расстояние между ними станет меньше длины катодного темного пространства, то тлеющий разряд в газе прекратится. Опыты показывают, что при прочих равных условиях длина d катодного темного пространства обратно пропорциональна давлению газа. Следовательно, при достаточно низких давлениях электроны, выбиваемые из катода положительными ионами, проходят через газ почти без столкновений с его молекулами, образуя электронные , или катодные лучи .

Тлеющий разряд используется в газосветных трубках, лампах дневного света, стабилизаторах напряжения, для получения электронных и ионных пучков. Если в катоде сделать щель, то сквозь нее в пространство за катодом проходят узкие ионные пучки, часто называемые каналовыми лучами. Широко используется явление катодного распыления , т.е. разрушение поверхности катода под действием ударяющихся о него положительных ионов. Ультрамикроскопические осколки материала катода летят во все стороны по прямым линиям и покрывают тонким слоем поверхность тел (особенно диэлектриков), помещенных в трубку. Таким способом изготовляют зеркала для ряда приборов, наносят тонкий слой металла на селеновые фотоэлементы.

Явления, происходящие в вакуум-трубке при тлеющем разряде, уже были описаны выше (§ 46). Там же пояснены термины, определяющие основные зоны тлеющего разряда: первый катодный слой, темное катодное (круксово) пространство, второй катодный слой, темное анодное (фарадеево) пространство, анодное свечение.

Когда мы соединяем электроды эвакуированной трубки с полюсами источника высокого напряжения, то свободные положительные ионы, всегда имеющиеся в газе, устремляются к катоду. При небольших разрежениях скорости их недостаточны для того, чтобы при соударении с поверхностью катода вызвать вырывание из вещества катода электронов, однако если разрежение и, следовательно, средний свободный путь значительны, то скорость положительных ионов достигает «критической величины», и катод под влиянием бомбардировки ионами становится источником электронов, выбрасываемых в окружающее катод пространство и устремляющихся к аноду.

Удары электронов о нейтральные молекулы газа возбуждают свечение газа и частично ионизацию газа. В темном круксовом пространстве (которое в действительности тоже светится, но кажется темным по контрасту с яркими катодными слоями) скорость электронов быстро возрастает. Второй катодный слой является областью наиболее интенсивных соударений электронов с нейтральными молекулами. Эти соударения тормозят движение электронов. В темном фарадеевом пространстве электроны движутся к аноду с меньшей скоростью, чем в круксовом пространстве.

Движение электронов и ионов с неравномерной скоростью создает неравномерное распределение их зарядов в пространстве между электродами; это существенно деформирует поле между электродами; падение потенциала вдоль вакуум-трубки делается неравномерным, что в свою очередь усугубляет неравномерность распределения зарядов по пространству.

В итоге устанавливается то характерное для тлеющего разряда изменение потенциала вдоль трубки, которое представлено на рис. 162 (измерение потенциала производят, смещая электроды относительно зонда, рис. 163). При удалении от анода потенциал медленно падает в области положительного свечения, почти не изменяется в области тлеющего свечения (второй катодный слой) и резко падает близ катода в области круксова темного пространства.

Рис. 162. Распределение потенциала при тлеющем разряде.

Это резкое падение потенциала близ катода, так называемое катодное падение потенциала, имеет ту или иную величину (порядка 100- 300 в) в зависимости от природы газа и вещества катода.

Рис. 163. Схема опытов по измерению потенциала в различных точках газоразрядной трубки.

Длина круксова темного пространства, где имеет место катодное падение потенциала, определяется свободным пробегом ионов и поэтому возрастает при уменьшении плотности газа; произведение длины на давление газа остается постоянным:

Кинетическая энергия, накапливаемая электронами при пробеге круксова пространства, является достаточной для ионизации газа в области тлеющего свечения (второго катодного слоя); здесь образуются положительные ионы, необходимые для поддержания разряда. Если анод приближать к катоду, то

расположение катодных слоев не изменяется и только укорачивается область положительного свечения (рис. 164). Но если анод приблизить до тлеющего свечения, то приостанавливается нормальное образование положительных ионов, необходимых для поддержания разряда, и разряд прекращается.

Рис. 164. Положение анода не влияет на расположение катодных слоев при тлеющем разряде.

Форма и расположение столба положительного свечения зависят от внутренних очертаний трубки (рис. 165).

Рис. 165. Влияние расположения электродов и формы трубки на вид тлеющего разряда.

Когда расстояние между электродами меньше того, которое нужно, чтобы на нем разместились темное катодное пространство и светящиеся катодные слои, то тлеющий разряд может избрать себе более длинный путь (рис. 166).

Положительный столб нередко распадается на отдельные чередующиеся светлые и темные полосы - страты. В этом случае тлеющий разряд называют слоистым (рис. 167).

Если сопоставлять тлеющий разряд в одном и том же. газе, но при катодах, изготовленных из разных металлов, то обнаруживается,

что катодное падение потенциала пропорционально работе выхода электрона из металла (о работах выхода сказано в § 33). Коэффициент пропорциональности в этой линейной зависимости между катодным падением потенциала и работой выхода неодинаков для газов различной химической природы (рис. 168).

Температура газа у самого катода выше, чем в соседних зонах тлеющего разряда. Положительные ионы, бомбардирующие катод, вырывают из катода не только электроны, но и нейтральные атомы металла: происходит распыление металла, из которого изготовлен катод. Чем больше масса ионов, ударяющихся о катод, тем сильнее происходит катодное распыление металла.

Рис. 166. В случае слишком малого расстояния между электродами тлеющий разряд осуществляется по более длинному пути.

Поэтому в тяжелых газах распыление больше, чем в легких. Понятно, что катодное распыление тем более велико, чем больше плотность тока. Наиболее легко распыляются висмут, сурьма, свинец, кадмий, серебро. Катодное распыление применяют для получения тонких металлических слоев на стекле, слюде и (когда желают получить тонкую металлическую пленку) на веществах, которые легко удалить растворением.

Положительное свечение тлеющего разряда используют в качестве источника света (в так называемых газосветных трубках, содержащих инертные газы). Яркость свечения положительного столба зависит от плотности тока, от давления и химической природы газа и от влияния стенок разрядной трубки При малых давлениях газа положительное свечение заполняет все сечение цилиндрической разрядной трубки. При давлениях порядка нескольких десятков миллиметров ртутного столба, а также при увеличении тока положительный столб суживается, отделяясь от стенок трубки. При давлениях порядка одной или нескольких атмосфер положительное свечение приобретает вид ярко светящегося шнура, расположенного по оси трубки. Такое отшнурование положительного столба происходит потому, что температура газа у стенок трубки меньше, чем в осевой области. В связи с этим плотность газа около оси меньше, чем у стенок; стало быть, свободный пробег электронов около оси больше, и поэтому здесь устанавливается более высокая степень ионизации газа; это приводит к тому, что плотность разрядного тока по оси

(кликните для просмотра скана)

оказывается больше, что в свою очередь вызывает еще большее нагревание газа. В парах ртути при давлении в 1 атмосферу температура газа в отшнурованном положительном столбе равна 5000-6000°К, а при давлении 200-300 атмосфер она достигает 8000-10 000°.

Тлеющий разряд удобно наблюдать при пониженном давлении газа. Если к электродам, впаянным в стеклянную трубку длиной 30-50 см, приложить постоянное напряжение в несколько сот ампер и затем постепенно откачивать воздух из трубки, то наблюдается следующее явление: при атмосферном давлении приложенное напряжение недостаточно для пробоя газа и трубка остается темной. При уменьшении давления газа в некоторый момент в трубке возникает разряд, имеющий вид светящегося шнура. При дальнейшем уменьшении давления этот шнур расширяется и заполняет все сечение трубки.

Особое значение в тлеющем разряде имеют только две его части - катодное темное пространство и тлеющее свечение, в которых и происходят основные процессы, поддерживающие разряд.

Характерным для тлеющего разряда является особое распределение потенциала по длине трубки. Его можно определить, впаивая в трубку ряд дополнительных электродов - зондов, расположенных в различных местах трубки, и присоединяя между катодом и соответствующим зондом вольтметр с большим сопротивлением. Тогда получается кривая распределения потенциала, изображенная на рисунке 5. Она показывает, что почти все падения потенциала в разряде приходятся на область катодного темного пространства. Эта разность потенциалов между катодом и границей тлеющего свечения получила название катодного падения потенциала.

Существование катодного темного пространства объясняется тем, что электроны начинают сталкиваться с атомами газа не сразу, а лишь на некотором расстоянии от катода. Ширина катодного темного пространства приблизительно равна средней длине свободного пробега электронов: она увеличивается с уменьшением давления газа. Следовательно, в катодном темном пространстве электроны движутся практически без соударения.

Катодное падение потенциалов необходимо для поддержания тлеющего разряда. Именно благодаря его наличию положительные ионы приобретают необходимую энергию для образования интенсивной вторичной электронной эмиссии с катода, без которой тлеющий разряд не мог бы существовать. Поэтому катодное падение потенциала есть наиболее характерный признак тлеющего разряда, отличающий эту форму газового разряда от всех других форм.

Тлеющий разряд широко используют в качестве источника света в различных газоразрядных трубках. В лампах дневного света излучение тлеющего разряда поглощается слоем специальных веществ, нанесенных на внутреннюю поверхность трубки, которые под действием поглощенного излучения в свою очередь начинают светиться. Такие трубки оказываются более экономичными нежели обычные лампы накаливания.

Газоразрядные трубки применяются также для рекламных и декоративных целей, для чего им придают очертания различных фигур и букв. Наполняя трубки различными газами, можно получить свечение разной окраски.

В лабораторной практике используют тлеющий разряд для катодного распыления металлов, так как вещество катода в тлеющем разряде постепенно переходит в парообразное состояние и оседает в виде металлического налета на стенках трубки.

Тлеющий разряд

Тлеющий разряд в неоне

Тле́ющий разря́д - один из видов стационарного самостоятельного электрического разряда в газах . Формируется, как правило, при низком давлении газа и малом токе. При увеличении проходящего тока превращается в дуговой разряд .

В отличие от нестационарных (импульсных) электрических разрядов в газах, основные характеристики тлеющего разряда остаются относительно стабильными во времени.

Типичным примером тлеющего разряда, знакомым большинству людей, является свечение неоновой лампы .

Присоединим электроды к источнику постоянного тока с напряжением несколько тысяч вольт (годится электрическая машина) и будем постепенно откачивать из трубки воздух. При атмосферном давлении газ внутри трубки остаётся тёмным, так как приложенное напряжение в несколько тысяч вольт недостаточно для того, чтобы пробить длинный газовый промежуток. Однако когда давление газа достаточно понизится, в трубке вспыхивает светящийся разряд. Он имеет вид тонкого шнура (в воздухе - малинового цвета, в других газах - других цветов), соединяющего оба электрода. В этом состоянии газовый столб хорошо проводит электричество.

При дальнейшей откачке светящийся шнур размывается и расширяется, и свечение заполняет почти всю трубку. При давлении газа в несколько десятых миллиметра ртутного столба разряд заполняет почти весь объем трубки. Различают следующие две главные части разряда: 1) несветящуюся часть, прилегающую к катоду, получившую название тёмного катодного пространства; 2) светящийся столб газа, заполняющий всю остальную часть трубки, вплоть до самого анода. Эта часть разряда носит название положительного столба. При подходящем давлении положительный столб может распадаться на отдельные слои, разделённые тёмными промежутками, так называемые страты.

Описанная форма разряда называется тлеющим разрядом. Почти весь свет исходит от его положительного столба. При этом цвет свечения зависит от рода газа. При тлеющем разряде газ хорошо проводит электричество, а значит, в газе всё время поддерживается сильная ионизация. Причинами ионизации газа в тлеющем разряде являются электронная эмиссия с катода под действием высоких температур или сильного электрического поля, последующая ионизация молекул газа электронным ударом свободными электронами, вырванными с катода и летящих по направлению к аноду, а также вторичная электронная эмиссия электронов с катода, вызванная бомбардировкой катода положительно заряженными ионами газа.

В настоящее время трубки с тлеющим разрядом находят практическое применение как источник света - газоразрядные лампы. Для целей освещения часто применяются люминесцентные лампы , в которых разряд происходит в парах ртути, причём вредное для зрения ультрафиолетовое излучение поглощается слоем флюоресцирующего вещества - люминофора , покрывающего изнутри стенки лампы. Люминофор начинает светиться видимым светом, давая в результате свет, близкий по характеристикам к дневному свету (люминесцентные лампы дневного света). Такие лампы дают близкое к “естественному” освещение (но не полный спектр, как у ламп накаливания). Спектр испускаемого люминесцентными лампами света дискретный - красная, зелёная и синяя составляющая в определённой пропорции, плюс незначительные спектральные пики других цветов от примесей люминофора. Энергия освещения распределяется по этим узким полосам спектра, поэтому эти лампы значительно (в 3-4 раза) экономичнее ламп накаливания (у последних до 95% энергии занимает инфракрасная область спектра, невидимая человеческим глазом).

Люминесцентные лампы в быту приходят на смену лампам накаливания, а на производстве и в служебных помещениях почти полностью их вытеснили. Однако люминесцентные лампы не лишены недостатков. Так, например, на производстве использование люминесцентных ламп сопряжено с вредным стробоскопическим эффектом , заключающемся в том, что мерцание люминесцентной лампы с частотой питающего напряжения может совпасть по частоте вращения обрабатывающего механизма, при этом сам механизм в свете такой лампы для человека будет казаться неподвижным, "выключенным", что может привести к травме. Поэтому применяют дополнительную подсветку операционной зоны простой лампой накаливания, лишённой такого недостатка в силу инерции световой отдачи нити накаливания.

Газоразрядные лампы применяются также для декоративных целей. В этих случаях им придают очертания букв, различных фигур и т. д. и наполняют газом с красивым цветом свечения (неоном , дающим оранжево–красное свечение, или аргоном с синевато–зелёным свечением).

См. также

Литература

  • Райзер Ю. П. Физика газового разряда. - 2-е изд. - М .: Наука, 1992. - 536 с. - ISBN 5-02014615-3

Wikimedia Foundation . 2010 .

Смотреть что такое "Тлеющий разряд" в других словарях:

    Один из видов стационарного самостоятельного электрического разряда в газах. Происходит при низкой темп ре катода, отличается сравнительно малой плотностью тока на катоде (… Физическая энциклопедия

    Электрический разряд в газе, отличающийся сравнительно малой плотностью тока на катоде и большим катодным падением потенциала. Поддерживается электронной эмиссией с катода под действием ударов положительных ионов и фотоэлектронной эмиссией … Большой Энциклопедический словарь

    тлеющий разряд - Самостоятельный разряд, при котором электрическое поле в разрядном промежутке определяется в основном величиной и расположением объемных зарядов и который характеризуется наличием катодного падения потенциала, значительно большего, чем… … Справочник технического переводчика

    Самостоятельный электрический разряд в газе, отличающийся сравнительно малой плотностью тока на катоде и большим катодным падением потенциала. Поддерживается электронной эмиссией с катода под действием ударов положительных ионов и фотоэлектронной … Энциклопедический словарь

    тлеющий разряд - Glow Discharge Тлеющий разряд Один из видов стационарного самостоятельного электрического разряда в газах. Формируется, как правило, при низком давлении газа и малом токе. При увеличении проходящего тока превращается в дуговой разряд. В… … Толковый англо-русский словарь по нанотехнологии. - М.

    тлеющий разряд - rusenantysis išlydis statusas T sritis automatika atitikmenys: angl. glow discharge vok. Glimmentladung, f rus. тлеющий разряд, m pranc. décharge luminescente, f … Automatikos terminų žodynas

    тлеющий разряд - rusenantysis išlydis statusas T sritis fizika atitikmenys: angl. glow discharge vok. Glimmentladung, f rus. тлеющий разряд, m pranc. décharge en lueur, f; décharge luminescente, f; effluve, f … Fizikos terminų žodynas

    Один из видов стационарного самостоятельного электрического разряда в газах (См. Электрический разряд в газах). Происходит при низкой температуре катода, отличается сравнительно малой плотностью тока на катоде и большим (порядка сотен… … Большая советская энциклопедия

    Самостоятельный электрич. разряд в газе, отличающийся сравнительно малой плотностью тока на катоде и большим катодным падением потенциала. Поддерживается электронной эмиссией с катода под действием ударов положит. ионов и фотоэлектронной эмиссией … Естествознание. Энциклопедический словарь Подробнее электронная книга


Процессы, рассмотренные выше, играют важную роль в возникновении и поддерживании так называемого тлеющего разряда (см. приложение 1.1).

Эту форму газового разряда удобно наблюдать при пониженном давлении газа. Если к электродам, впаянным в стеклянную трубку длиной 30-50 см, приложить постоянное напряжение в несколько сот вольт и затем постепенно откачивать воздух из трубки, то наблюдаются следующие явления. При атмосферном давлении приложенное напряжение недостаточно для пробоя газа и трубка остаётся тёмной. При уменьшении давления газа (около 5,3-6,7 кПа) в некоторый момент в трубке возникнет разряд, имеющий вид светящегося шнура, соединяющего анод и катод трубки. При дальнейшем уменьшении давления (около 1,3 Па) этот шнур расширяется и заполняет всё сечение трубки, а свечение вблизи катода ослабевает.

При давлениях газа порядка 0,1-0,01 мм. рт. ст. разряд имеет вид на рис. 3.1.1.

Непосредственно к катоду прилегает тонкий светящийся слой 1 (первое катодное свечение, или катодная плёнка), за которым следует тёмный слой 2, получивший название катодного тёмного пространства. Это тёмное пространство затем переходит в светящийся слой 3 (тлеющее свечение), который имеет резкую границу со стороны катода и постепенно исчезает со стороны анода. Оно возникает из-за рекомбинации электронов с положительными ионами. За тлеющим свечением наблюдается опять тёмный промежуток 4, называемый вторым или фарадеевым тёмным пространством. Указанные части называются катодными частями разряда. За вторым тёмным пространством лежит светящаяся область 5, простирающаяся до анода, или положительный столб. В некоторых случаях этот столб распадается на ряд слоёв, или страт.

Особое значение в тлеющем разряде имеют только две его части - катодное тёмное пространство и тлеющее свечение, в которых и происходят основные процессы, поддерживающие разряд. Если в газоразрядной трубке сделать анод подвижным и постепенно придвигать его к катоду (рис. 3.1.1), то все катодные части остаются неизменными, а укорачивается только положительный столб. При дальнейшем уменьшении длины разрядного промежутка начинает укорачиваться второе катодное тёмное пространство, и когда анод попадает в тлеющее свечение, оно исчезает вовсе. Однако при этом разряд продолжает существовать. Когда же анод при дальнейшем уменьшении расстояния подходит к границе между первым катодным пространством и тлеющим свечением, разряд гаснет.

Характерным для тлеющего разряда является особое распределение потенциала по длине трубки. Его можно определить, впаивая в трубку ряд дополнительных электродов - зондов, расположенных в различных местах трубки, и присоединяя между катодом и соответствующим зондом вольтметр с большим сопротивлением. Всё падение потенциала в разряде приходится на область катодного тёмного пространства. Эта разность потенциалов между катодом и границей тлеющего свечения получила название катодного падения потенциала. Опыт показывает, что если сила тока в разряде не очень велика, то величина катодного падения потенциала не зависит от силы тока (нормальное катодное падение потенциала). Изменение силы тока изменяет лишь величину светящейся поверхности на катоде, которая увеличивается с увеличением силы тока. Когда же сила тока достигает такой величины, что катодная плёнка покрывает всю поверхность катода, катодное падение потенциала начинает возрастать с увеличением силы тока (аномальное катодное падение потенциала).

Существенным для понимания процессов в тлеющем разряде является то обстоятельство, что величина нормального катодного падения потенциала зависит лишь от материала катода и рода газа, причём катодное падение потенциала оказывается пропорциональным работе выхода электронов из катода.

Рассмотренные свойства тлеющего разряда приводят к следующей картине процессов, поддерживающих разряд. Положительные ионы, образующиеся в результате ионизации электронными ударами (в тлеющем свечении и в положительном столбе), движутся к катоду и, проходя через область катодного падения потенциала, приобретают значительную энергию. Под действием интенсивной бомбардировки быстрыми положительными ионами (а также вследствие фотоэффекта, вызванного излучением разряда) с катодом вылетают электроны, которые движутся к аноду. Эти электроны в области катодного падения потенциала сильно ускоряются и при последующих соударениях с атомами газа их ионизируют. В результате опять появляются положительные ионы, которые, снова устремляясь на катод, производят новые электроны и т.д. Таким образом, основными процессами, поддерживающими разряд, являются ионизация электронными ударами в объёме и вторичная электронная эмиссия на катоде.

Существование катодного темного пространства объясняется тем, что электроны начинают сталкиваться с атомами газа не сразу, а лишь на некотором расстоянии от катода. Ширина катодного тёмного пространства приблизительно равна средней длине свободного пробега электронов: она увеличивается с уменьшением давления газа. В катодном тёмном пространстве электроны, следовательно, движутся практически без соударений, образуя электронные, или катодные лучи. Если в катоде просверлить малые отверстия, то положительные ионы, бомбардирующие катод, пройдя через отверстия проникают в пространство за катодом и образуют резко ограниченный пучок, получивший название каналовых (или положительных) лучей, названных по знаку заряда, который они несут.

Распределение концентраций положительных ионов и электронов в различных частях разряда весьма неодинаково. Так как положительные ионы движутся гораздо медленнее, нежели электроны, то у катода концентрация ионов значительно больше, чем концентрация электронов. Поэтому вблизи катода возникает сильный пространственный положительный заряд, который и вызывает появление катодного падения потенциала. Напротив, в области положительного столба концентрации положительных ионов и электронов почти одинаковы и здесь пространственного заряда нет. Благодаря большой концентрации электронов положительный столб обладает хорошей электропроводностью и поэтому падение напряжения на нем весьма мало.

Так как в положительном столбе имеются и положительные ионы, и электроны, то здесь происходит интенсивная рекомбинация ионов, чем и объясняется свечение положительного столба.

Мы видим, что катодное падение потенциалов необходимо для поддержания тлеющего разряда. Именно благодаря его наличию положительные ионы приобретают необходимую энергию для образования интенсивной вторичной электронной эмиссии с катода, без которой тлеющий разряд не мог бы существовать. Поэтому катодное падение потенциала есть наиболее характерный признак тлеющего разряда, отличающий эту форму газового разряда от всех других форм.

Тлеющий разряд широко используют в качестве источника света в различных газосветных трубках. В лампах дневного света излучение тлеющего разряда поглощается слоем специальных веществ, нанесённых на внутреннюю поверхность трубки, которые под действием поглощённого излучения в свою очередь начинают светиться. Подходящим подбором этих веществ (люминофоров)испускаемое ими излучение можно сделать близким к дневному свету. Такие трубки оказываются более экономичными, нежели обычные лампы накаливания.

Газосветные трубки применяются также для рекламных и декоративных целей, для чего им придают очертания различных фигур и букв. Наполняя трубки различными газами, можно получить свечение различной окраски (красное у неона, синевато-зеленое у аргона).

Пользуясь тем, что катодное падение потенциала зависит от материала катода, можно сделать газосветные трубки с малым напряжением зажигания. Так, например, в неоновой лампе, в которой электродами служат два железных листочка, покрытых слоем бария, вследствие малости работы выхода электронов у бария, катодное падение потенциала составляет только около 70 В. Поэтому лампа зажигается уже при включении в обычную осветительную сеть. Такие лампы употребляют для целей сигнализации в различной аппаратуре (индикаторные лампы).

В лабораторной практике используют тлеющий разряд для катодного распыления металлов, так как вещество катода в тлеющем разряде постепенно переходит в парообразное состояние и оседает в виде металлического налёта на стенках трубки.

Причина катодного распыления, по всей вероятности, заключается в том, что каждый положительный ион при соударении с катодом передаёт свою энергию сначала небольшой группе атомов катода. Это приводит к сильному местному повышению температуры, возникающему в отдельных микроскопических областях катода, которое и приводит к испарению металла в этих местах. Помещая в тлеющем разряде против катода различные предметы, оказывается возможным покрыть их равномерным и прочным слоем металла. Этим способом, в частности, пользуются для изготовления металлических зеркал высокого качества.