20.09.2019

Как построить силовые линии по эквипотенциальным. Эквипотенциальная поверхность


Найдем взаимосвязь между напряженностью электростатического поля, являющейся его силовой характеристикой, и потенциалом - энергетической характеристикой поля. Работа по перемещению единичного точечного положительного заряда из одной точки поля в другую вдоль оси х при условии, что точки расположены бесконечно близко друг к другу и x 1 – x 2 = dx, равна E x dx. Та же работа равна j 1 -j 2 = dj. Приравняв оба выражения, можем записать

где символ частной производной подчеркивает, что дифференцирование производится только по х. Повторив аналогичные рассуждения для осей y и z, можем найти вектор Е:

где i, j, k - единичные векторы координатных осей х, у, z.

Из определения градиента (12.4) и (12.6). следует, что

т. е. напряженность Е поля равна градиенту потенциала со знаком минус. Знак минус определяется тем, что вектор напряженности Е поля направлен в сторону убывания потенциала.

Для графического изображения распределения потенциала электростатического поля, как и в случае поля тяготения (см. § 25), пользуются эквипотенциальными поверхностями - поверхностями, во всех точках которых потенциал jимеет одно и то же значение.

Если поле создается точечным зарядом, то его потенциал, согласно (84.5),

Таким образом, эквипотенциальные поверхности в данном случае - концентрические сферы. С другой стороны, линии напряженности в случае точечного заряда - радиальные прямые. Следовательно, линии напряженности в случае точечного заряда перпендикулярны эквипотенциальным поверхностям.

Линии напряженности всегда нормальны к эквипотенциальным поверхностям. Действительно, все точки эквипотенциальной поверхности имеют одинаковый потенциал, поэтому работа по перемещению заряда вдоль этой поверхности равна нулю, т. е. электростатические силы, действующие на заряд, всегда направлены по нормалям к эквипотенциальным поверхностям. Следовательно, вектор Е всегда нормален к эквипотенциальным поверхностям, а поэтому линии вектора Е ортогональны этим поверхностям.

Эквипотенциальных поверхностей вокруг каждого заряда и каждой системы зарядов можно провести бесчисленное множество. Однако их обычно проводят так, чтобы разности потенциалов между любыми двумя соседними эквипотенциальными поверхностями были одинаковы. Тогда густота эквипотенциальных поверхностей наглядно характеризует напряженность поля в разных точках. Там, где эти поверхности рас положены гуще, напряженность поля больше.

Итак, зная расположение линий напряженности электростатического поля, можно построить эквипотенциальные поверхности и, наоборот, по известному расположению эквипотенциальных поверхностей можно определить в каждой точке поля модуль и направление напряженности поля. На рис. 133 для примера показан вид линий напряженности (штриховые линии) и эквипотенциальных поверхностей (сплошные линии) полей положительного точечного заряда (а) и заряженного металлического цилиндра, имеющего на одном конце выступ, а на другом - впадину (б).

Направление силовой линии (линии напряженности) в каждой точке совпадает с направлением . Отсюда следует, что напряженность равна разности потенциалов U на единицу длины силовой линии .

Именно вдоль силовой линии происходит максимальное изменение потенциала. Поэтому всегда можно определитьмежду двумя точками, измеряя U между ними, причем тем точнее, чем ближе точки. В однородном электрическом поле силовые линии – прямые. Поэтому здесь определить наиболее просто:

Графическое изображение силовых линий и эквипотенциальных поверхностей показано на рисунке 3.4.

При перемещении по этой поверхности на dl потенциал не изменится:

Отсюда следует, что проекция вектора на dl равнанулю, то есть Следовательно, в каждой точке направлена по нормали к эквипотенциальной поверхности.

Эквипотенциальных поверхностей можно провести сколько угодно много. По густоте эквипотенциальных поверхностей можно судить о величине , это будет при условии, что разность потенциалов между двумя соседними эквипотенциальными поверхностями равна постоянной величине.

Формула выражает связь потенциала с напряженностью и позволяет по известным значениям φ найти напряженность поля в каждой точке. Можно решить и обратную задачу, т.е. по известным значениям в каждой точке поля найти разность потенциаловмежду двумя произвольными точками поля. Для этого воспользуемся тем, что работа, совершаемая силами поля над зарядом q при перемещении его из точки 1 в точку 2, может быть, вычислена как:

С другой стороны работу можно представить в виде:

, тогда

Интеграл можно брать по любой линии, соединяющие точку 1 и точку 2, ибо работа сил поля не зависит от пути. Для обхода по замкнутому контуру получим:

т.е. пришли к известной нам теореме о циркуляции вектора напряженности: циркуляция вектора напряженности электростатического поля вдоль любого замкнутого контура равна нулю.

Поле, обладающее этим свойством, называется потенциальным.

Из обращения в нуль циркуляции вектора следует, что линии электростатического поля не могут быть замкнутыми:они начинаются на положительных зарядах (истоки) и на отрицательных зарядах заканчиваются (стоки) или уходят в бесконечность (рис. 3.4).

Это соотношение верно только для электростатического поля. Впоследствии мы с вами выясним, что поле движущихся зарядов не является потенциальным, и для него это соотношение не выполняется.

Для более наглядного графического изображения полей, кроме линий напряжённости, используют поверхности равного потенциала или эквипотенциальные поверхности. Как следует из названия, эквипотенциальная поверхность – это такая поверхность, все точки которой имеют одинаковый потенциал. Если потенциал задан как функция x, y, z, то уравнение эквипотенциальной поверхности имеет вид:

Линии напряжённости поля перпендикулярны эквипотенциальным поверхностям.

Докажем это утверждение.

Пусть линия и силовая линия составляют некоторый угол (рис.1.5).

Переместим из точки 1 в точку 2 вдоль линии пробный заряд . При этом силы поля совершают работу:

. (1.5)

То есть работа перемещения пробного заряда вдоль эквипотенциальной поверхности равна нулю. Эту же работу можно определить и другим способом – как произведение заряда на модуль напряженности поля, действующего на пробный заряд, на величину перемещения и на косинус угла между вектором и вектором перемещения , т.е. косинус угла (см.рис.1.5):

.

Величина работы не зависит от способа её подсчёта, согласно (1.5) она равна нулю. Отсюда вытекает, что и, соответственно, , что и требовалось доказать.


Эквипотенциальную поверхность можно провести через любую точку поля. Следовательно, таких поверхностей может быть построено бесконечное множество. Условились, однако, проводить поверхности таким образом, чтобы разность потенциалов для двух соседних поверхностей была бы всюду одна и та же. Тогда по густоте эквипотенциальных поверхностей можно судить о величине напряжённости поля. Действительно, чем гуще располагаются эквипотенциальные поверхности, тем быстрее изменяется потенциал при перемещении вдоль нормали к поверхности.

На рис.1.6,а показаны эквипотенциальные поверхности (точнее, их пересечения с плоскостью чертежа) для поля точечного заряда. В соответствии с характером изменения эквипотенциальные поверхности при приближении к заряду становятся гуще. На рис.1.6,б изображены эквипотенциальные поверхности и линии напряжённости для поля диполя. Из рис.1.6 видно, что при одновременном использовании эквипотенциальных поверхностей и линий напряжённости картина поля получается особенно наглядной.


Для однородного поля эквипотенциальные поверхности, очевидно, представляют собой систему равноотстоящих друг от друга плоскостей, перпендикулярных к направлению напряжённости поля.

1.8. Связь между напряжённостью поля и потенциалом

(градиент потенциала)

Пусть имеется произвольное электростатическое поле. В этом поле проведём две эквипотенциальные поверхности таким образом, что они отличаются одна от другой потенциалом на величину (рис. 1.7)

Вектор напряжённости направлен по нормали к поверхности . Направление нормали совпадает с направлением оси x. Ось x , проведённая из точки 1, пересекает поверхность в точке 2.

Отрезок dx представляет собой кратчайшее расстояние между точками 1 и 2. Работа, совершаемая при перемещении заряда вдоль этого отрезка:

С другой стороны, эту же работу можно записать как:

Приравнивая эти два выражения, получаем:

где символ частной производной подчёркивает, что дифференцирование производиться только по x . Повторив аналогичные рассуждения для осей y и z , можем найти вектор :

, (1.7)

где – единичные векторы координатных осей x, y, z.

Вектор, определяемый выражением (1.7), называется градиентом скаляра φ . Для него наряду с обозначением применяется также обозначение . («набла») означает символический вектор, называемый оператором Гамильтона

ТЕОРЕТИЧЕСКИЕ ОСНОВЫ РАБОТЫ.

Между напряженностью электрического доля и электрическим потенциалом существует интегральная и дифференциальная связь:

j 1 - j 2 = ∫ Е dl (1)

E = -grad j (2)

Электрическое поле может быть представлено графически двумя способами, дополняющими друг друга: с помощью эквипотенциальных поверхностей и ли­ний напряженности (силовых линий).

Поверхность, все точки которой имеют одинаковый потенциал, называется эквипотенциальной поверхностью. Линия пересечения ее с плоскостью чертежа называется эквипотенциалью. Силовые линии - линии, касательные к которым в каждой точке совпадают с направлением вектора Е . На рисунке 1 пунктирными линиями показаны эквипотенциали, сплошными - силовые линии электрического поля.


Рис.1

Разность потенциалов между точками 1 и 2 равна 0, так как они находятся на одной эквипотенциали. В этом случае из (1):

∫Е dl = 0 или ∫Е dlcos ( Edl ) = 0 (3)

Поскольку Е и dl в выражении (3) не равны 0, то cos ( Edl ) = 0 . Следовательно, угол между эквипотенциалью и силовой линией составляет p/2.

Из дифференциальной связи (2) следует, что силовые линии всегда направлены в сторону убывания потенциала.

Величина напряженности электрического поля определяется «густотой» сило­вых линий. Чем гуще силовые линии, тем меньше расстояние между эквипотенциалями, так что силовые линии и эквипотенциали образуют "криволинейные квадраты". Исходя из этих принципов, можно построить картину силовых линий, располагая картиной эквипотенциалей, и наоборот.

Достаточно полная картина эквипотенциалей поля позволяет рассчитать в раз­ных точках значение проекции вектора напряженности Е на выбранное направ­ление х , усредненное по некоторому интервалу координаты ∆х :

Е ср. ∆х = - ∆ j /∆х,

где ∆х - приращение координаты при переходе с одной эквипотенциали на дру­гую,

j - соответствующее ему приращение потенциала,

Е ср. ∆х - среднее значение Е х между двумя потенциалами.

ОПИСАНИЕ УСТАНОВКИ И МЕТОДИКА ИЗМЕРЕНИЙ.

Для моделирования электрического поля удобно использовать аналогию, су­ществующую между электрическим полем, созданным заряженными телами и электрическим полем постоянного тока, текущего по проводящей пленке с одно­родной проводимостью. При этом расположение силовых линий электрического поля оказывается аналогично расположению линий электрических токов.

То же утверждение справедливо для потенциалов. Распределение потенциалов поля в проводящей пленке такое же, как в электрическом поле в вакууме.

В качестве проводящей пленки в работе используется электропроводная бума­га с одинаковой во всех направлениях проводимостью.

На бумаге устанавливаются электроды так, чтобы обеспечивался хороший кон­такт между каждым электродом и проводящей бумагой.

Рабочая схема установки приведена на рисунке 2. Установка состоит из модуля II, выносного элемента I, индикатора III, источника питания IV. Модуль служит для подключения всех используемых приборов. Выносной элемент представляет собой диэлектрическую панель 1, на которую помещают лист белой бумаги 2, по­верх нее - лист копировальной бумаги 3, затем - лист электропроводящей бумаги 4, на котором крепятся электроды 5. Напряжение на электроды подается от моду­ля II с помощью соединительных проводов. Индикатор III и зонд 6 используются для определения потенциалов точек на поверхности электропроводящей бумаги.

В качестве зонда применяется провод со штекером на конце. Потенциал j зонда равен потенциалу той точки поверхности электропроводящей бумаги, которой он касается. Совокупность точек поля с одинаковым потенциалом и есть изображе­ние эквипотенциали поля. В качестве источника питания IV используется блок питания ТЕС – 42, который подключается к модулю с помощью штепсельного разъема на задней стенке модуля. В качестве индикатора Ш используется вольт­метр В7 – 38.



ПОРЯДОК ВЫПОЛНЕНИЯ РАБОТЫ.

1. Установить на панели 1 лист белой бумаги 2. На него положить копироваль­ную бумагу 3 и лист электропроводящей бумаги 4 (рис.2).

2. Установить на электропроводящей бумаге электроды 5 и закрепить гайками.

3. Подключить к модулю блок питания IV (ТЕС – 42) с помощью штепсельного разъема на задней стенке модуля.

4. С помощью двух проводников подключить индикатор III (вольтметр В7 – 38) к гнездам "PV" на лицевой панели модуля. Нажать соответствующую кнопку на вольтметре для измерения постоянного напряжения (рис.2).

5. С помощью двух проводников подключить электроды 5 к модулю П.

6. Подключить зонд (провод с двумя штекерами) к гнезду на лицевой панели модуля.

7. Подключить стенд к сети 220 В. Включить общее питание стенда.

Электростатическое поле можно охарактеризовать совокупностью силовых и эквипотенциальных линий.

Силовая линия – это мысленно проведенная в поле линия, начинающаяся на положительно заряженном теле и заканчивающаяся на отрицательно заряженном теле, проведенная таким образом, что касательная к ней в любой точке поля дает направление напряженности в этой точке.

Силовые линии замыкаются на положительных и отрицательных зарядах и не могут замыкаться сами на себя.

Под эквипотенциальной поверхностью понимают совокупность точек поля, имеющих один и тот же потенциал ().

Если рассечь электростатическое поле секущей плоскостью, то в сечении будут видны следы пересечения плоскости с эквипотенциальными поверхностями. Эти следы называют эквипотенциальными линиями.

Эквипотенциальные линии являются замкнутыми сами на себя.

Силовые линии и эквипотенциальные линии пересекаются под прямым углом.

Р
ассмотрим эквипотенциальную поверхность:

(так как точки лежат на эквипотенциальной поверхности).

– скалярное произведение

Линии напряженности электростатического поля пронизывают эквипотенциальную поверхность под углом 90 0 , тогда угол между векторами
равен 90 градусам, а их скалярное произведение равно 0.

Уравнение эквипотенциальной линии

Рассмотрим силовую линию:

Н
апряженность электростатического поля направлена по касательной к силовой линии (см. определение силовой линии), также направлен и элемент пути, поэтому угол между этими двумя векторами равен нулю.

или

Уравнение силовой линии

Градиент потенциала

Градиент потенциала – это скорость возрастания потенциала в направлении кротчайшем между двумя точками.

Между двумя точками имеется некоторая разность потенциалов. Если эту разность разделить на кратчайшее расстояние между взятыми точками, то полученное значение будет характеризовать скорость изменения потенциала в направлении кратчайшего расстояния между точками.

Градиент потенциала показывает направление наибольшего возрастания потенциала, численно равен модулю напряженности и отрицательно направлен по отношению к нему.

В определении градиента существенны два положения:

    Направление, в котором берутся две близлежащие точки, должно быть таким, чтобы скорость изменения была максимальной.

    Направление таково, что скалярная функция в этом направлении возрастает.

Для декартовой системы координат:

Скорость изменения потенциала в направлении оси Х, Y, Z:

;
;

Два вектора равны только тогда, когда равны друг другу их проекции. Проекция вектора напряженности на ось Х равна проекции скорости изменения потенциала вдоль оси Х , взятой с обратным знаком. Аналогично для осей Y и Z .

;
;
.

В цилиндрической системе координат выражение градиента потенциала будет иметь следующий вид.