20.09.2019

Нулевая энергия гармонического осциллятора равна. Идеальный гармонический осциллятор. Уравнение идеального осциллятора и его решение. Амплитуда, частота и фаза колебаний


Гармонический осциллятор.

Систему, описываемую уравнением , где , будем называть гармоническим осциллятором. Решение этого уравнения, как известно, имеет вид:

.

Следовательно, гармонический осциллятор представляет собой систему, которая совершает гармонические колебания около положения равновесия.

Для гармонического осциллятора справедливы все результаты, полученные ранее для гармонического колебания.

Рассмотрим и обсудим ещё дополнительно к ним два вопроса.

Найдем импульс гармонического осциллятора. Продифференцируем выражение по t и, умножив полученный результат на массу осциллятора, получим:

В каждом положении, характеризуемом отклонением “x”, осциллятор имеет некоторое значение ”p”. Чтобы найти ”p” как функцию ”x”, нужно исключить ”t” из написанных для ”p” и ”x” уравнений, Представим эти уравнения в виде:

(8.9)

Возведя эти выражения в квадрат и складывая, получим:

. (8.10)

Нарисуем график, показывающий зависимость ”p” импульса гармонического осциллятора от отклонения ”x” (рис. 8.6). Координатную плоскость (”p”, ”x”) принято называть фазовой плоскостью , а соответствующий график – фазовой траекторией . Фазовая траектория гармонического осциллятора представляет собой эллипс с полуосями “A” и ”A·m·w 0 ”. Каждая точка фазовой траектории изображает состояние осциллятора для некоторого момента времени (т.е. его отклонение и импульс). С течением времени точка, изображающая состояние, перемещается по фазовой траектории, совершая за период колебания полный обход. Причем это перемещение совершается по часовой стрелке [а именно, если в некоторый момент времени t¢ x=A, p=0, то в следующий момент времени ”x” будет уменьшаться, а ”p” принимать все возрастающие по модулю отрицательные значения, т.е. движение изобразительной точки (т.е. точки изображающей состояние) будет происходить по часовой стрелке].

Найдем теперь площадь эллипса . Или

.

Здесь , где n 0 – собственная частота осциллятора, являющаяся для данного осциллятора величиной постоянной.

Следовательно, . Откуда

Таким образом, полная энергия гармонического осциллятора пропорциональна площади эллипса, причем коэффициентом пропорциональности служит собственная частота осциллятора.

8.6. Малые колебания системы вблизи положения равновесия.

Рассмотрим произвольную механическую систему, положение которой может быть задано с помощью одной величины “x”. Величиной ”x”, определяющей положение системы может быть угол, отсчитываемый от некоторой плоскости или расстояние, отсчитываемое вдоль заданной кривой.

Потенциальная энергия такой системы будет функцией одной переменной ”x”: E p =E p (x).

Выберем начало отсчета таким образом, чтобы в положении равновесия x=0. Тогда функция E p (x) будет иметь минимум при x=0.

(ввиду малости “x” остальными членами пренебрегаем)

Так как E p (x) при x=0 имеет минимум, то , а . Обозначим E p (x) = b и , тогда .

Это выражение идентично с выражением для потенциальной энергии системы, в которой действует квазиупругая сила (константу “b” можно положить равной 0).

Сила, действующая на систему, может быть определена по формуле: . Получено с учетом, что работа совершается за счет убыли потенциальной энергии .

Итак, потенциальная энергия системы при малых отклонениях от положения равновесия оказывается квадратичной функцией смещения, а сила, действующая на систему, имеет вид квазиупругой силы. Следовательно, при малых отклонениях от положения равновесия любая механическая система будет совершать колебания, близкие к гармоническим.

8.7. Математический маятник.

ОПРЕДЕЛЕНИЕ: математическим маятником будем называть идеализированную систему, состоящую из невесомой и нерастяжимой нити, на которой подвешена масса, сосредоточенная в одной точке.

Отклонение маятника от положения равновесия будет характеризоваться углом j (рис. 8.7). При отклонении маятника от положения равновесия возникает вращательный момент , он имеет такое направление, что стремится вернуть маятник в положение равновесия, поэтому моменту M и угловому смещению j нужно приписать разные знаки.

Рассмотрим колебания грузика массой m на пружинке с коэффициентом жесткости k, который лежит на плоском горизонтальном столе, предполагая, что трение грузика об поверхности стола отсутствует. Если грузик вывести из положения равновесия, он будет совершать колебания относительно этого положения. Эти колебания мы будем описываем зависящей от времени функцией, считая, что она определяет отклонение грузика из своего положения равновесия в момент времени t.

В горизонтальном направлении на грузик действует только одна сила - сила упругости пружинки, определенная известным законом Гука

Деформация пружины является функцией времени, в силу чего, также является переменной.

Из второго закона Ньютона имеем

поскольку ускорение является второй производной от смещения: .

Уравнение (9) можно переписать в форме

где. Это уравнение получило название уравнение гармонического осциллятора.

Замечание. В математической литературе, при написании дифференциального уравнения обычно не указывают аргумент (t) около всех, зависящих от него функций. Такая зависимость предполагается по умолчанию. При использовании же математического пакета Maple в (10) необходимо указывать явную зависимость функции.

В отличие от предыдущего примера движения тела под действием постоянной силы в нашем случае сила изменяется с течением времени, и уравнение (10) уже нельзя решить с помощью обычной процедуры интегрирования. Попытаемся угадать решение этого уравнения, зная, что оно описывает некоторый колебательный процесс. В качестве одного из возможных решений уравнения (10) можно выбрать следующую функцию:

Дифференцируя функцию (11), имеем

Подставляя выражение (12) в уравнение (10), убеждаемся, что оно удовлетворяется тождественно при любом значении t.

Однако, функция (11) не является единственным решением уравнения гармонического осциллятора. Например, в качестве другого его решения можно выбрать функцию, что также легко проверить аналогичным образом. Более того, можно проверить, что любая линейная комбинация этих двух наугад названных решений

с постоянными коэффициентами A и B также является решениеv уравнения гармонического осциллятора.

Можно доказать, что зависящее от двух постоянных решение (13) является общим решением уравнения гармонического осциллятора (10). Это означает, что формула (13) исчерпывает все возможные решения этого уравнения. Иными словами, других частных решений, кроме тех, которые получаются из формулы (13) фиксацией произвольных постоянных А и В, уравнение гармонического осциллятора не имеет.

Заметим, что в физике наиболее часто приходится искать именно некоторые частные решения отдельных ОДУ или их систем. Рассмотрим этот вопрос более подробно.

Возбудить колебания в рассматриваемой нами системе грузика на пружинке можно разными способами. Пусть мы задали следующие начальные условия

Это значит, что в начальный момент времени грузик был отведен из положения равновесия на величину a и свободно отпущен (т.е. он начинает свое движение с нулевой начальной скоростью). Можно представить себе и много разных других способов возбуждения, например, грузику в положении равновесия «щелчком» придается некоторая начальная скорость и т.д. [общем случае, ].

Мы рассматриваем начальные условия (14) как некоторые дополнительные условия для выделения из общего решения (13) некоторого частного решения, соответствующего нашему способу возбуждения колебаний грузика.

Полагая t=0 в выражении (13), имеем, откуда следует, что B=a. Таким образом, мы нашли одну из ранее произвольных констант в решении (13). Далее, дифференцируя в формуле (13), имеем

Полагая в этом выражении t=0 и учитывая второе начальное условие из (14), получим, отсюда следует, что A=0 и, таким образом, исходное частное решение имеет вид

Оно описывает колебательный режим рассматриваемой механической системы, который определяется условиями начального возбуждения (14).

Из школьного курса физики известно, что в формуле (16) a является амплитудой колебаний (она задает максимальную величину отклонения грузика от своего положения равновесия), является циклической частотой, а - фазой колебаний (начальная фаза оказывается при этом равной нулю).

Уравнение гармонического осциллятора (10) является примером линейного ОДУ. Это значит, что неизвестная функция и все ее производные входят в каждый член уравнения в первой степени. Линейные дифференциальные уравнения обладают чрезвычайно важным отличительным свойством: они удовлетворяют принципу суперпозиции. Это значит, что любая линейная комбинация двух каких либо решений линейного ОДУ также является его решением.

В рассматриваемом нами примере уравнения гармонического осциллятора, произвольная линейная комбинация двух частных решений и является не просто каким-то новым решением, но общим решением этого уравнения (оно исчерпывает все возможные его решения).

В общем случае, это не так. Например, если бы мы имели дело с линейным дифференциальным уравнением третьего порядка, (т.е. если бы в уравнение входила бы третья производная), то линейная комбинация каких-либо двух его частных решений также была бы решением этого уравнения, но не представляла бы собой его общее решение.

В курсе дифференциальных уравнений доказывается теорема о том, что общее решение ОДУ N-ого порядка (линейного или нелинейного) зависит от N произвольных постоянных. В случае нелинейного уравнения эти произвольные постоянные могут входить в общее решение (в отличие от (13)), нелинейным образом.

Принцип суперпозиции играет в теории ОДУ исключительно важную роль, поскольку с его помощью можно построить общее решение дифференциального уравнения в виде суперпозиции его частных решений. Например, для случая линейных ОДУ с постоянными коэффициентами и их систем (уравнение гармонического осциллятора относится именно к этому типу уравнений) в теории дифференциальных уравнений разработан общий метод решения. Суть его заключается в следующем. Ищется частное решение в виде. В результате его подстановки в исходное уравнение, все зависящие от времени множители сокращаются и мы приходим к некоторому характеристическому уравнению, которое для ОДУ N-ого порядка представляет собой алгебраическое уравнение N-ой степени. Решая его, мы находим, тем самым, все возможные частные решения, произвольная линейная комбинация которых и дает общее решение исходного ОДУ. Мы не будем далее останавливаться на этом вопросе, отсылая читателя к соответствующим учебникам по теории дифференциальным уравнениям, в которых можно найти дальнейшие детали, в частности, рассмотрение случая, когда характеристическое уравнение содержит кратные корни.

Если рассматривается линейное ОДУ с переменными коэффициентами, (его коэффициенты зависят от времени), то принцип суперпозиции также справедлив, но построить в явном виде общее решение этого уравнение каким-либо стандартным методом, уже не представляется возможным. Мы вернемся к этому вопросу далее, обсуждая явление параметрического резонанса и связанным с его исследованием уравненем Матье.

Рассмотрим простую физическую систему – материальную точку, способную без трения колебаться на горизонтальной поверхности под действием силы Гука (см. рис. 2).

Если смещение груза невелико (много меньше, чем длина недеформированной пружины), а жесткость пружины равна k, то но груз действует единственная сила, сила Гука. Тогда уравнение

движения груза (Второй закон Ньютона) имеет вид

Перенеся слагаемые в левую часть равенства и разделив на массу материальной точки (массой пружины пренебрегаем по сравнению с m), получим уравнение движения

(*) ,

,

,

период колебаний.

Тогда, взяв функцию

и продифференцировав её по времени, убеждаемся, во-первых, что скорость движения груза равна

а во-вторых, после повторного дифференцирования,

,

то есть X(t) действительно является решением уравнения груза на пружинке.

Такая система, вообще, любая система, механическая, электрическая или иная, обладающая уравнением движения (*), называется гармоническим осциллятором. Функция типа X(t) носит название закона движения гармонического осциллятора, величины
называютсяамплитудой ,циклической илисобственной частотой ,начальной фазой . Собственная частота определяется параметрами осциллятора, амплитуда и начальная фаза задаются начальными условиями.

Закон движения X(t) представляет собой свободные колебания. Такие колебания совершают незатухающие маятники (математический или физический), ток и напряжения в идеальном колебательном контуре и некоторые другие системы.

Гармонические колебания могут складываться как в одном, так и в различных направлениях. Результатом сложения тоже оказывается гармоническое колебание, например,

.

Это принцип суперпозиции (наложения) колебаний.

Математики разработали теорию рядов такого рода, которые называются рядами Фурье. Имеется также ряд обобщений типа интегралов Фурье (частоты могут меняться непрерывным образом) и даже интегралы Лапласа, работающие с комплексными частотами.

§15. Затухающий осциллятор. Вынужденные колебания.

Реальные механические системы всегда обладают, хотя бы малым, трением. Простейший случай – жидкое или вязкое трение. Это трение, величина которого пропорционально скорости движения системы (и направлена, естественно, против направления движения). Если движение происходит вдоль оси Х, то уравнение движения может быть записано (например, для грузика на пружинке) в виде

,

где – коэффициент вязкого трения.

Это уравнение движения можно преобразовать к виду

.

Здесь
– коэффициент затухания,– по-прежнему собственная частота осциллятора (который уже нельзя назвать гармоническим; это затухающий осциллятор с вязким трением).

Математики умеют решать такие дифференциальные уравнения. Было показано, что решением является функция

В последней формуле используются обозначения: – начальная амплитуда, частота слабозатухающих колебаний
,
. Кроме того, часто используют другие параметры, характеризующие затухание: логарифмический декремент затухания
, время релаксации системы
, добротность системы
, где в числителе стоит запасенная системой энергия, а в знаменателе – потери энергии за период Т.

В случае сильного затухания
решение имеет апериодический вид.

Часто встречаются случаи, когда кроме сил трения на осциллятор действует внешняя сила. Тогда уравнение движения приводится к виду

,

стоящее справа выражение часто называют приведенной силой, само выражение
называют вынуждающей силой. Для произвольной вынуждающей силы найти решение уравнения не удается. Обычно рассматривают гармоническую вынуждающую силу типа
. Тогда решение представляет собой затухающую часть типа (**), которая для больших времен стремится к нулю, и установившиеся (вынужденные) колебания

Амплитуда вынужденных колебаний

,

а фаза вынужденных колебаний

.

Заметим, что при приближении собственной частоты к частоте вынуждающей силы амплитуда вынужденных колебаний возрастает. Это явление известно как резонанс . Если затухание велико, то резонансное увеличение не велико. Такой резонанс называют «тупым». При малых затуханиях амплитуда «острого» резонанса может возрасти весьма значительно. Если же система идеальна, и трение в ней отсутствует, то амплитуда вынужденных колебаний увеличивается неограниченно.

Заметим также, что при частоте вынуждающей силы

Достигается максимальное значение амплитуды вынуждающей силы, равное

.

Колебания гармонического осциллятора Гармоничным осциллятором называется физический объект, эволюция которого со временем описывается дифференциальным уравнением

Где q – обобщенная координата гармонического осциллятора, t – время, ? – характерная частота гармонического осциллятора. Две точки над переменной означают вторую производную по времени. Величина q совершающий гармонические колебания.
Задача о гармоничном осциллятор играет центральную роль как в классической, так и в квантовой физике.
Большое количество физических систем ведут себя как гармоничные осциллятора при малом отклонении от равновесия. К ним относятся математический и физический маятники, колебания атомов в молекулах и твердых телах, электрические колебательные контуры и многие другие.
Малые колебания маятника являются гармоническими

Энергия, функция Лагранжа и Гамильтона
Кинетическая энергия гармонического осциллятора задается выражением

Потенциальная энергия гармонического осциллятора задается выражением

Соответственно, считая величину q обобщенной координатой, функция Лагранжа гармоничного осцлятора записывается

.

Обобщенный импульс

Функция Гамильтона

.

Вынужденные колебания
Под действием внешней периодической силы с частотой, которая не обязательно совпадает с собственной частотой гармонического осциллятора, осциллятор совершает гармонические колебания, аплитуда которых определяется величиной внешней силы и соотношением внешней частоты и собственной частоты осциллятора.
Вынужденные колебания гармонического осциллятора с частотой? 0 под действием силы с частотой?описуються уравнением

Где f 0 – амплитуда внешней силы.
Частное решение этого уравнения, описывающий вынужденные колебания имеет вид

.

Гармоничный осцитор под действием внешней силы совершающий гармонические колебания с амплитудой . При амплитуда вынужденных колебаний стремится к бесконечности. Это явление называется резонансом.
Гармонический осциллятор с затуханием
При учете сил трения или сопротивления другого рода, который приводит к диссипации энергии осциллятора и превращении ее в тепло, уравнение гармонического осциллятора меняются. В частности очень распространенный случай, когда силы сопротивления пропорциональны скорости изменения величины q. Тогда уравнение гармонического осциллятора принимает вид

Такие колебания затухают со временем по закону

Вынужденные колебания гармонического осциллятора с затуханием
При действии периодической внешней силы даже при затухании для осциллятора устанавливаются гармонические колебания с амплитудой, зависящей от приложенной силы, соотношение частот, а также от величины затухания.
Амплитуда вынужденных колебаний с учетом затухания определяется формулой

.

Это конечная величина при всех частотах внешней силы.
Математический маятник при небольшом начальном отклонении от вертикали совершающий гармонические колебания с частотой

Колебательный контур гармоническим осциллятором, с частотой

Где L – индуктивность, C – емкость.
Подробнее см. Квантовый осциллятор.
Спектр собственных значений и собственных функциях
Волновые функции первых шести состояний с квантовыми числами от n = 0 до 5. На оси ординат отложена обобщенная координата Гамильтониан гармонического осциллятора получается заменой в функции Гамильтона импульса p на

.

Спектр гармонического осциллятора находится со стационарного уравнения Шредингера и задается формулой

.

Здесь n – квантовое число, пробегает значения от нуля до бесконечности. Энергетические уровни гармонического осциллятора эквидистантных. Характерной особенностью гармонического осциллятора является то, что даже в основном состоянии гармоничный осциллятор имеет отличную от нуля энергию

Эта низкая энергия называется энергией нулевых колебаний.
Собственные функции гармонического осциллятора, соответствующих квантовому числу n задаются формулами

,

Где , А H n (x) – полиномы Эрмита.
При четном n собственные функции гармонического осциллятора парные, при Непрану – нечетные. Гамильтониан гармонического осциллятора коммутирует с оператором замены x на – x (оператором четности), а потому имеет общие собственные функции с этим оператором.
Операторы рождения и уничтожения
Если определить оператор рождения

И оператор уничтожения

,

.

Операторы рождения и уничтожения удовлетворяют коммутационном соотношению:

Собственные функции гармонического осциллятора тогда имеют вид

Или, используя нотацию кет и бра-векторов:

Всего действие оператора рождения на гармоничное оператор в состоянии | n> приводит к переходу в состояние | n +1>:

Действие оператора уничтожения на состояние | n> приводит к переходу в состояние | n-1>:

Оператор

Называют оператором числа частиц, поскольку для него справедливо соотношение.

Правила отбора
При излучении или поглощении фотона разрешенными переходами для гармонического осциллятора есть такие, при которых квантовое число n изменяется на единицу. Учитывая еквидистантнисть уровней, это правило отбора приводит к тому, что, несмотря на бесконечное число уровней, в спектре оптического поглощения или излучения гармонического осциллятора есть только одна линия с частотой?.
В реальных колебательных спектрах молекул возможны отклонения от этого правила, обусловленные ангармоничнистю реального потенциала межатомного взаимодействия, квадрупольными переходами и т.д.

Простейшей моделью колебательного движения атомов в двухатомной молекуле может служить система из двух масс т / и ш?, связанных упругой пружиной. Колебание двух атомов относительно центра масс может быть заменено колебанием одной эквивалентной

массы относительно начальной нулевой точки R= 0, где

R - расстояние между массами, R e - положение точки равновесия.

При классическом рассмотрении предполагается, что пружина идеальна - упругая сила F прямо пропорциональна деформации - отклонению от равновесия х = R-R e , по закону Гука:

где к - константа упругости. Таким образом, сила направлена в сторону возвращения к равновесному положению.

Совместно используя законы Гука и Ньютона (F -та), можно записать:

(обозначая ). Решением такого уравнения, как известно,

служат гармонические функции

где хо - амплитуда, а

Используя приведенную массу получаем:

Мерой потенциальной энергии системы V служит работа

В квантовой механике анализ колебательного движения для простой модели гармонического осциллятора достаточно сложен. Он основан на решении уравнения Шредингера

(у/ - колебательная волновая функция, Е - общая энергия частицы) и выходит за рамки нашего изложения.

Для квантового осциллятора возможен только дискретный ряд значений энергии Е и частот в соответствии с формулой E=hv. Кроме того, минимальное значение энергии осциллятора не равно нулю. Эта величина называется нулевой энергией, она соответствует низшему энергетическому уровню осциллятора и равна , её существование можно объяснить, исходя из соотношения неопределенностей Гейзенберга.

Таким образом, в соответствии с квантовой механикой энергия гармонического осциллятора квантуется:

где v - колебательное квантовое число, которое может принимать значение у=0, 1, 2, 3,....

При взаимодействии осциллятора с квантами электромагнитного излучения следует учитывать три фактора: 1) заселенность уровней (вероятность нахождения молекулы на данном энергетическом уровне); 2) правило частот (Бора), согласно которому энергия кванта должна соответствовать разности энергии каких-либо двух уровней;

3) правило отбора для квантовых переходов: вероятность перехода, т.е. интенсивность линий в спектре поглощения определяется величиной дипольного момента перехода (см. теоретическое введение). В случае простейшего гармонического осциллятора правило отбора получается из рассмотрения волновых функций. Оно гласит, что переходы могут осуществляться только между соседними уровнями («на одну ступеньку»): колебательное квантовое число изменяется на единицу Av = 1. Поскольку расстояния между соседними уровнями одинаковы, то в спектре поглощения гармонического осциллятора должна присутствовать только одна линия с частотой

Так как в соответствии с распределением Больцмана при комнатной и более низких температурах заселен самый нижний колебательный уровень, то наиболее интенсивен переход с самого низкого уровня (d=0), и частота этой линии совпадает с частотой более слабых переходов с вышележащих уровней на соседний, более высокий уровень.

Графики волновых функций гармонического осциллятора для разных значений энергии приведены на рисунке 2.3. Они представляют собой решения уравнения Шредингера для гармонического осциллятора

где N, - нормирующий множитель, Н 0 - полиномы Эрмита, х = R-R e - отклонение от положения равновесия.

Дипольный момент перехода для колебательных переходов, R 0 (или М„) равен:

где ju - дипольный момент молекулы; колеба

тельные волновые функции исходного и конечного состоянийсоответственно. Из формулы видно, что переход разрешен ,

если в точке равновесия - дипольный момент молекулы

изменяется вблизи положения точки равновесия, (кривая ju=f(R) в этой точке не проходит через максимум). Интеграл (второй сомножитель в формуле) также должен быть не равным нулю. Можно показать, что это условие соблюдается, если переход совершается между соседними уровнями, отсюда дополнительное правило отбора Аи = 1.

В случае двухатомных молекул колебательные спектры могут наблюдаться только для гетероядерных молекул, у гомоядерных молекул дипольный момент отсутствует и не изменяется при колебаниях. В колебательных спектрах СО2 проявляются колебания (валентные антисимметричные и деформационные), при которых изменяется дипольный момент, но не проявляются симметричные колебания, при которых он неизменен.