20.02.2019

Рабочее заземление: определение, устройство и назначение. Что называется защитным и рабочим заземлением. Защитное и рабочее заземление


Содержание:

В процессе эксплуатации электрооборудования возникает необходимость в использовании заземляющих устройств. В зависимости от назначения, может использоваться защитное и рабочее заземление. В первом случае обеспечивается безопасность персонала, работающего на электроустановках, а во втором случае речь идет о нормальной работе устройств в обычном и аварийном режимах. Оба заземления различаются между собой и не могут быть использованы совместно. Для того чтобы лучше понять назначение и принцип действия, нужно подробнее рассмотреть каждое из них.

Что называется защитным заземлением

Устройств защитного заземления выполняется путем преднамеренного электрического соединения с землей металлических частей, к которым не подведен электрический ток и которые могут неожиданно оказаться под напряжением.

Главной функцией защитного заземления считается надежная защита людей от поражения током в случае соприкосновения с металлическими нетоковедущими частями, которые оказываются под напряжением по разным причинам, в основном, из-за повреждения изоляции.

Защитное заземление не следует путать с , рабочим и повторным заземлением, нулевым защитным проводником. Его действие в первую очередь направлено на снижение до безопасного значения напряжений шага и прикосновения, образующихся при замыкании на корпус. Это достигается снижением потенциала заземленного оборудования за счет уменьшения сопротивления заземляющего устройства. Одновременно выравниваются потенциалы основания, где находится человек и самого заземленного оборудования.

Защитное заземление используется в следующих областях:

  • В , напряжением до 1 кВ с .
  • В однофазных двухпроводных сетях переменного тока, изолированных от земли, с напряжением до 1 кВ.
  • В двухпроводных сетях постоянного тока, в которых изолирована средняя точка обмоток источника тока.
  • В сетях переменного и постоянного тока с любыми режимами обмоток источника тока при напряжении более 1 кВ.

Непосредственное соприкосновение с землей или ее эквивалентом осуществляется с помощью заземлителей. Они разделяются на два основных типа:

  1. Искусственные заземлители. Применяются только в целях заземления. Они изготавливаются из различных стальных конструкций и не должны окрашиваться. Для защиты от коррозии может использоваться оцинкованное покрытие, увеличенное количество заземлителей, специальная электрическая защита. В некоторых случаях в качестве заземлителя может использоваться электропроводящий бетон.
  2. Естественные заземлители. С этой целью используются электропроводящие части сетей и коммуникаций в зданиях и сооружениях, находящиеся в соприкосновении с землей. Заземление электроустановок рекомендуется выполнять в первую очередь из естественных заземлителей. Следует использовать трубы водопровода и системы отопления, конструкции зданий и сооружений из металла и железобетона, рельсовые пути, свинцовые оболочки кабелей и т.д. Нельзя использовать трубопроводы, по которым подаются горючие жидкости, газы или смеси.

Что называется рабочим заземлением

Рабочим заземлением считается преднамеренное соединение с землей определенных точек, имеющихся в электрических цепях. В первую очередь, это нейтральные точки генераторных и трансформаторных обмоток. В качестве соединений применяются надежные проводники, а также специальное оборудование в виде пробивных предохранителей, разрядников, резисторов и т.д.

Главным предназначением рабочего заземления является создание препятствий сбоям и замыканиям, поддержание системы в случае возникновения аварийной ситуации. Под его воздействием происходит снижение электрического напряжения в деталях и частях механизма, непосредственно находящихся под напряжением. Принятые меры способствуют локализации электрических сбоев, их отводу и недопущению дальнейшего распространения.

В соответствии с правилами техники безопасности, запрещается совмещать защитное и рабочее заземление. Это связано с тем, что различные токи помех, например, атмосферные электрические разряды, могут наложиться на токи, протекающие в однопроводных цепях. Это может привести к нарушениям внешних связей устройств и даже повреждениям аппаратуры. Кроме того, подобные совмещения могут сделать неэффективной защиту от напряжения. В случае аварийных ситуаций она будет работать в качестве рабочей или не будет функционировать вообще.

Сопротивление рабочего заземления должно быть не более 4 Ом. Такое ограничение связано с величиной напряжения, возникающего относительно земли на нулевом проводе, в процессе протекания тока замыкания на землю через рабочее заземление. Это особенно актуально при замыкании трансформаторной обмотки высокого напряжения на обмотку низкого напряжения.

Функциональное заземление.. Защитное заземление.. Источники помех в сетях заземления.. Способы защиты оборудования от помех.. Сеть с изолированной нейтралью.. Гальваническая развязка по питанию.. Разделительный трансформатор.. Электромагнитная совместимость оборудования (ЭМС).. Варианты функционального заземления.. Реконструкция действующих объектов.. Проектирование новых объектов.. Независимое функциональное заземление.. Главная заземляющая шина (ГЗШ).. Шина функционального заземления (ШФЗ).. Зона нулевого потенциала.. Защитная шина РЕ.. Функциональная шина FE.. Шина уравнивания потенциалов.. Сопротивление функционального заземления.. Обоснование проектных решений.. Ящик функционального заземления..

Функциональное (рабочее) заземление используется для нормального функционирования электроустановки или оборудования, т.е. для их работы в обычном режиме, не в целях электробезопасности, поэтому его использование в качестве единственной системы заземления категорически запрещается.

Данный вид заземления может совмещаться с защитным заземлением или выполняться дополнительно к нему исходя из требований производителя оборудования, заказчика или нормативных документов.

Защитное заземление зачастую является источником перенапряжений и кондуктивных помех в слаботочных системах автоматического управления , измерительного, информационного или другого чувствительного к воздействию помех оборудования, что побуждает к поиску эффективных способов защиты подобного оборудования от различного рода помех и перенапряжений.

Способы защиты информационного оборудования от помех

1. Сеть с изолированной нейтралью. Радикальным решением описанных выше проблем с помехами по защитному заземлению является применение гальванической развязки по питанию (IT – сеть) с раздельным заземлением силовой и измерительной части системы, что исключает протекание токов помехи от силовой земли.
Осуществление гальванической развязки может выполняться с помощью развязывающего (разделительного) трансформатора или с помощью автономных источников питания: гальванических батарей и аккумуляторов.

Основная идея гальванической развязки заключается в том, что в электрической цепи полностью устраняется путь, по которому возможна передача кондуктивной помехи. Поскольку в такой сети нет гальванической связи между землей, фазой и нейтралью, то не образуется замкнутый токовый контур с землей и касание любого из силовых выходов разделительного трансформатора является безопасным. Токи утечки на землю составляют микроамперы, что значительно меньше уровня токов безопасности и не представляет угрозы для человека.
Разделительный трансформатор, кроме того, является хорошей защитой от импульсных, грозовых перенапряжений, что обеспечивает более надежную работу подключенной аппаратуры.
Таким образом , высокая надежность, электробезопасность и помехозащищенность сетей с изолированной нейтралью является их неоспоримым преимуществом.
Вместе с тем, применение разделительных трансформаторов с системами контроля изоляции (СКИ) требует достаточно больших затрат и возникает законный вопрос о целесообразности таких расходов. Эта тема заслуживает.

2. Электромагнитная совместимость оборудования (ЭМС).

В большинстве случаев сбоев и отказов в работе систем автоматики, вычислительной и измерительной техники можно избежать соблюдением требований электромагнитной совместимости оборудования и правил выполнения заземления таких систем:

Применение оборудования, которое отвечает требованиям соответствующих стандартов на электромагнитную совместимость (ЭМС);
Применение в цепях питающих фидеров устройства защиты от перенапряжений;
Присоединение металлических оболочек кабелей к совмещенной системе уравнивания потенциалов;
Разделение силовых и сигнальных кабелей и правильное выполнение их пересечений;
Применение сигнальных и информационных кабелей, соответствующих требованиям изготовителя к электромагнитной совместимости;
Силовые и сигнальные кабели должны быть отделены от токоотводов системы молниезащиты минимальным расстоянием либо при помощи экранирования в соответствии с МЭК 62305-3.
Электропитание слаботочных микропроцессорных устройств необходимо производить от источников бесперебойного электропитания (UPS), имеющих помехоподавляющие сетевые фильтры.
Наружные протяженные сети электроснабжения необходимо прокладывать кабелем с экранирующей оболочкой, подключаемой к действующему контуру защитного заземления .
Соединение заземлителей функционального и защитного заземления с целью уравнивания потенциалов между ними должно выполняться в одной точке на шине СУП или ГЗШ – токи утечки по РЕ проводнику не должны попадать на экраны кабелей.

3. Правильно выполненное заземление. Это один из основных и доступных методов уменьшения импульсных помех и перенапряжений, которые приводят к сбоям при работе слаботочного микропроцессорного оборудования. Правильное заземление обычно решает бо льшую часть вопросов снижения перенапряжений и помех.

4. Уравнивание потенциалов между заземляющими устройствами разных назначений является основным условием обеспечения электробезопасности персонала. В помещениях, предназначенных для работы чувствительной к помехам аппаратуры, обязательно делают систему уравнивания потенциалов. По внутреннему периметру здания должен располагаться кольцевой соединительный проводник, соединенный с главной заземляющей шиной. Кольцевые проводники уравнивания потенциалов должны располагаться также на каждом этаже. Пример внутреннего контура системы уравнивания потенциалов по периметру здания показан на рис. 1 .

Рис. 1


Варианты функционального заземления

1. Реконструкция уже действующих объектов. В этом случае по условиям работы информационного оборудования часто требуется низкоомный заземлитель, который выполняется дополнительно к имеющемуся защитному заземлению электроустановки здания.
Согласно ПУЭ 1.7.55 «В первую очередь должны быть соблюдены требования, предъявляемые к защитному заземлению ». Другими словами – на первом месте должна быть защита жизни и здоровья людей. Соответственно, шина функционального заземления (ШФЗ) должна быть соединена с защитным заземлением на главной заземляющей шине (ГЗШ) основной системы уравнивания потенциалов электроустановки здания, как показано на рис. 2 .

Данная схема заземления позволяет обеспечить электробезопасность в соответствии с требованиями ГОСТ Р 50571-4-44-2011 (МЭК 60364-4-44) , а также ПУЭ гл. 1.7 при условии, что имеющееся защитное заземление выполнено в полном соответствии с ПУЭ.
Опыт реконструкции действующих объектов показывает, что практически на всех объектах, особенно находящихся в эксплуатации 10 и более лет, обнаруживаются те или иные недостатки по заземлению: коррозия заземляющих устройств, несоответствие требованиям к сопротивлению заземлителя, несоблюдение требований электромагнитной совместимости...
Поэтому перед установкой информационного оборудования необходимо провести обследование устройств защитного заземления. Обследование заземляющих устройств включает в себя: внешний осмотр, вскрытие (при необходимости) находящихся в земле проводников, а также комплекс измерений параметров заземляющих устройств.
По результатам измерений должен быть выполнен соответствующий объем работ по восстановлению параметров защитного заземления, который целесообразно совместить с монтажом функционального заземления и переходом (при необходимости) на систему электропитания TN-S или TN-C-S.

Низкоомный заземлитель функционального заземления при этом желательно выполнять по «лучевой» схеме заземления, которая обеспечивает стабильную работу оборудования. В стесненных условиях возможно использование составного, глубинного заземлителя.

Функциональное заземление имеет свои требования к сопротивлению заземления, соответствующие требованиям предприятия-изготовителя аппаратуры или ведомственным нормам. Например, для средств вычислительной техники и информатики согласно СН 512-78 сопротивление заземления должно быть не более 1 Ом, для высокочувствительной медицинской аппаратуры в соответствии с Пособием по проектированию к СНиП 2.08.02-89 – не более 2 Ом и т. д.

2. Проектирование новых объектов.
Рис. 3

При проектировании новых объектов появляется возможность выполнить заземляющее устройство повторного защитного заземления на вводе в электроустановку здания на требуемое сопротивление функционального заземления , которое должно быть одновременно использовано для всех видов оборудования здания.
Схема заземляющего устройства повторного защитного заземления на требуемое сопротивление функционального заземления показана на рис. 3 .
В здании устанавливается главная заземляющая шина (ГЗШ), к которой подключаются: заземляющий проводник повторного защитного заземления, РЕN проводник, проводник системы уравнивания потенциалов, РЕ шина питающей линии в системе TN, заземляющее устройство системы молниезащиты 2-й и 3-й категорий, а также шина функционального заземления (ШФЗ).

Такая схема в последнее время получает широкое распространение при проектировании новых объектов и соответствует высокому уровню электробезопасности.

3. Независимое функциональное заземление. Иногда заземлитель функционального заземления приходится размещать отдельно, вне зоны влияния естественных и искусственных заземлителей электроустановки здания.

Выполнение функционального заземления, не связанного с заземляющим устройством защитного заземления и основной системой уравнивания потенциалов здания, нужно рассматривать как особый случай , в котором должны быть приняты специальные меры защиты людей от поражения электрическим током, исключающие возможность одновременного прикосновения к частям, присоединенным к системе уравнивания потенциалов электроустановки здания и к частям оборудования, присоединенным к независимому заземляющему устройству функционального заземления.

Всегда существует возможность возникновения разности потенциалов между раздельными системами заземления, если эти системы заземления находятся в пределах зоны ненулевого потенциала. Опасная разность потенциалов может возникнуть, например, при коротком замыкании на корпус электрооборудования в сети TN-S (до срабатывания системы защиты), при срабатывании молниезащиты (шаговое напряжение), при воздействии внешних электромагнитных полей и др.
С точки зрения электробезопасности вариант независимого функционального заземления (не связанного с заземляющим устройством защитного заземления) допусти м, если аппаратура питается от разделительного трансформатора или заземлители разных назначений находятся на таком расстоянии, что между ними есть зона нулевого потенциала. Расстояние между двумя этими заземлителями должно быть ≥ 20 м.
Подробнее о территориально сближенных и независимых заземляющих устройствах см. в статье Схема независимого функционального заземления показана на рис. 4 .

Необходимость устройства независимого функционального заземления может возникнуть, например, когда производитель информационного оборудования прямо указывает на необходимость автономного заземления (без отдельной «функциональной земли» оборудование не работает). В этом случае в шкафу с оборудованием производитель предусматривает две шины заземления:
защитная РЕ;
функциональная FE.
Функциональная шина FE изолирована от корпуса шкафа. К ней присоединяются экраны сигнальных (контрольных) кабелей. Шина FE соединяется медным изолированным кабелем (во избежание контакта с металлическими конструкциями здания) сечением не менее 1х25 мм2 с заземлителем, удаленным от заземлителя защитного (или любого другого) заземления на расстояние не менее 20 м. Защитное же заземление корпуса шкафа выполняется PE проводником на шину уравнивания потенциалов, соединенную с главной заземляющей шиной. Заметим, что эта шина FE внутри шкафа предусматривается самим заводом-изготовителем оборудования.

В качестве иллюстрации на рис. 5 приведен вариант независимого функционального заземления, не связанного с заземляющим устройством защитного заземления.

Рис. 5

Обоснование проектных решений

Чтобы не возникало сложностей с согласованием и сдачей проекта, нужно быть внимательным при получении ТЗ на проектирование. Если на проектируемом объекте применяется чувствительное к воздействию помех оборудование, то нужно сразу же запросить у заказчика или у производителя паспорта на данное оборудование , где должна быть обоснована необходимость устройства независимого заземлителя и указано требуемое сопротивление функционального заземления. Паспорта (сертификаты) на применяемое оборудование прилагаются к проекту и служат обоснованием проектных решений на всех этапах согласования проекта.
Независимое функциональное заземление выполняется по схеме на рис. 4.

Если независимый функциональный заземлитель производителем оборудования не предусматривается , то в этом случае функциональное заземление должно быть выполнено по одной из схем (рис. 2, 3 ) с учетом требований к электромагнитной совместимости. Изолированная шина функционального заземления в этом случае может быть установлена в отдельном ящике заземления, исключающем одновременное прикосновение к частям, которые могут оказаться под опасной разностью потенциалов при повреждении изоляции.
Пример такого ящика функционального заземления показан на рис. 6 .

Защитные меры в электроустановках. Меры защиты при косвенном прикосновении

Важной мерой, обеспечивающей электробезопасность обслуживающего электроустановки персонала, является защитное заземление или зануление металлических нетоковедущих (конструктивных) частей электроустановок и электрооборудования, нормально не находящихся под напряжением, но могущих оказаться под напряжением относительно земли в аварийных режимах (в случае повреждения изоляции).


Заземлением называется преднамеренное электрическое соединение какой-либо точки сети, электроустановки или оборудования с заземляющим устройством.


Заземление подразделяется на:

  1. защитное заземление.

ПУЭ дают следующие основные определения в отношении заземлений:


Рабочим заземлением называется заземление точки или точек токоведущих частей электроустановки, выполняемое для обеспечения работы электроустановки (для обеспечения надлежащей работы установки в нормальных и аварийных режимах).


Рабочее заземление может осуществляться непосредственно или через специальные аппараты (сопротивления, разрядники, реакторы и др.)


Защитным занулением в электроустановках напряжением до 1 кВ называется преднамеренное соединение открытых проводящих частей с глухозаземленной нейтралью генератора или трансформатора в сетях трехфазного тока , с глухозаземленным выводом источника однофазного тока , с заземленной точкой источника в сетях постоянного тока , выполняемое в целях электробезопасности.


Нулевой защитный проводник - защитный проводник в электроустановках до 1 кВ, предназначенный для присоединения открытых проводящих частей к глухозаземленной нейтрали источника питания.


Нулевой рабочий (нейтральный) проводник (N) - проводник в электроустановках до 1 кВ, предназначенный для питания электроприемников и соединенный с глухозаземленной нейтралью генератора или трансформатора в сетях трехфазного тока, с глухозаземленным выводом источника однофазного тока.


Заземляющее устройство - совокупность заземлителя и заземляющих проводников.


Заземляющий проводник - проводник, соединяющий заземляющую точку с заземлителем.


Заземлитель - проводящая часть или совокупность соединенных между собой проводящих частей, находящихся в электрическом контакте с землей непосредственно или через промежуточную проводящую среду.


Напряжение на заземляющем устройстве - напряжение, возникающее при стекании тока с заземлителя в землю между точкой ввода тока в заземлитель и зоной нулевого потенциала.


Сопротивление заземляющего устройства - отношение напряжения на заземляющем устройстве к току, стекающему с заземлителя в землю.


Заземление служит для превращения замыкания на корпус в замыкание на землю с целью снижения напряжения на корпусе относительно земли до безопасной величины.

Защитное заземление

Основное назначение защитного заземления:

  1. устранение опасности поражения электрическим током в случае прикосновения к корпусу или другим нетоковедущим металлическим частям электроустановки оказавшимся под напряжением.

Защитное заземление применяют в 3 х х фазных сетях до 1 кВ с изолированной нейтралью и в сетях выше 1 кВ с любым режимом нейтрали. Принципиальная схема защитного заземления представлена на рис. 4.7.



Рис.4.7. Принципиальные схемы защитного заземления (а) в сети с изолированной нейтралью и (б) в сети с заземленной нейтралью.
1 - корпуса защитного оборудования;
2 - заземлитель защитного заземления;
3 - заземлитель рабочего заземлений нейтрали источника тока; R3 и Ro - сопротивления защитного и рабочего заземлений.

Принцип действия защитного заземления основан на снижении напряжения между корпусом, оказавшимся под напряжением, и землёй до безопасной величины.


Поясним это на примере сети до 1 кВ с изолированной нейтралью.


Если корпус электрооборудования не заземлен и он оказался в контакте с фазой, то прикосновение к такому корпусу человека равносильно прикосновению к фазному проводу . В этом случае ток, проходящий через человека, можно определить по формуле (2.5).



При малом сопротивлении обуви, пола и изоляции проводов относительно земли этот ток может достигать опасных значений.


Если же корпус заземлён, то ток, проходящий через человека при R об = R n = 0, можно определить из следующего выражения:



Это выражение получено следующим путем:


с заземленного корпуса (рис. 4.8) ток стекает в землю через заземлитель (I з ) и через человека (I h ). Общий ток определяется выражением:



где:
R общ - общее сопротивление параллельно соединенных R з и R h :




Рис.4.8. К вопросу о принципе действия защитного заземления в сети с изолированной нейтралью.


Из схемы на рис. 4.8


I h ×R h =I з R з = I общ ×R общ., откуда ток через тело человека будет:



выполнив простейшие преобразования получим выражение (4.1).


При малом R з по сравнению с R h и R из это выражение упрощается:


где:
R з - сопротивление заземления корпуса, Ом


При R з = 4 Ом, R h =1000 Ом, R из =4500 Ом, ток через тело человека будет:


Такой ток безопасен для человека.


Напряжение прикосновения в этом случае будет также незначительно:


U пр =I h ×R h = 0,00058×1000=0,58 В


Чем меньше R з - тем лучше используются зашитные свойства защитного заземления.

Содержание:

В процессе эксплуатации электрооборудования возникает необходимость в использовании заземляющих устройств. В зависимости от назначения, может использоваться защитное и рабочее заземление. В первом случае обеспечивается безопасность персонала, работающего на электроустановках, а во втором случае речь идет о нормальной работе устройств в обычном и аварийном режимах. Оба заземления различаются между собой и не могут быть использованы совместно. Для того чтобы лучше понять назначение и принцип действия, нужно подробнее рассмотреть каждое из них.

Что называется защитным заземлением

Устройств защитного заземления выполняется путем преднамеренного электрического соединения с землей металлических частей, к которым не подведен электрический ток и которые могут неожиданно оказаться под напряжением.

Главной функцией защитного заземления считается надежная защита людей от поражения током в случае соприкосновения с металлическими нетоковедущими частями, которые оказываются под напряжением по разным причинам, в основном, из-за повреждения изоляции.

Защитное заземление не следует путать с, рабочим и повторным заземлением, нулевым защитным проводником. Его действие в первую очередь направлено на снижение до безопасного значения напряжений шага и прикосновения, образующихся при замыкании на корпус. Это достигается снижением потенциала заземленного оборудования за счет уменьшения сопротивления заземляющего устройства. Одновременно выравниваются потенциалы основания, где находится человек и самого заземленного оборудования.

Защитное заземление используется в следующих областях:

  • В, напряжением до 1 кВ с.
  • В однофазных двухпроводных сетях переменного тока , изолированных от земли, с напряжением до 1 кВ.
  • В двухпроводных сетях постоянного тока, в которых изолирована средняя точка обмоток источника тока.
  • В сетях переменного и постоянного тока с любыми режимами обмоток источника тока при напряжении более 1 кВ.

Непосредственное соприкосновение с землей или ее эквивалентом осуществляется с помощью заземлителей. Они разделяются на два основных типа:

  1. Искусственные заземлители. Применяются только в целях заземления. Они изготавливаются из различных стальных конструкций и не должны окрашиваться. Для защиты от коррозии может использоваться оцинкованное покрытие, увеличенное количество заземлителей, специальная электрическая защита . В некоторых случаях в качестве заземлителя может использоваться электропроводящий бетон.
  2. Естественные заземлители. С этой целью используются электропроводящие части сетей и коммуникаций в зданиях и сооружениях, находящиеся в соприкосновении с землей. Заземление электроустановок рекомендуется выполнять в первую очередь из естественных заземлителей. Следует использовать трубы водопровода и системы отопления, конструкции зданий и сооружений из металла и железобетона, рельсовые пути, свинцовые оболочки кабелей и т.д. Нельзя использовать трубопроводы, по которым подаются горючие жидкости, газы или смеси.

Что называется рабочим заземлением

Рабочим заземлением считается преднамеренное соединение с землей определенных точек, имеющихся в электрических цепях . В первую очередь, это нейтральные точки генераторных и трансформаторных обмоток. В качестве соединений применяются надежные проводники, а также специальное оборудование в виде пробивных предохранителей, разрядников, резисторов и т.д.

Главным предназначением рабочего заземления является создание препятствий сбоям и замыканиям, поддержание системы в случае возникновения аварийной ситуации. Под его воздействием происходит снижение электрического напряжения в деталях и частях механизма, непосредственно находящихся под напряжением. Принятые меры способствуют локализации электрических сбоев, их отводу и недопущению дальнейшего распространения.

В соответствии с правилами техники безопасности, запрещается совмещать защитное и рабочее заземление. Это связано с тем, что различные токи помех, например, атмосферные электрические разряды, могут наложиться на токи, протекающие в однопроводных цепях. Это может привести к нарушениям внешних связей устройств и даже повреждениям аппаратуры. Кроме того, подобные совмещения могут сделать неэффективной защиту от напряжения. В случае аварийных ситуаций она будет работать в качестве рабочей или не будет функционировать вообще.

Сопротивление рабочего заземления должно быть не более 4 Ом. Такое ограничение связано с величиной напряжения, возникающего относительно земли на нулевом проводе , в процессе протекания тока замыкания на землю через рабочее заземление. Это особенно актуально при замыкании трансформаторной обмотки высокого напряжения на обмотку низкого напряжения.

Заземление электроустановок делится на два основных вида - функциональное рабочее и защитное. В некоторых источниках встречаются и дополнительные виды заземлений, такие как измерительное, контрольное, инструментальное и радио.

Рабочее или функциональное заземление

В разделе ПУЭ в параграфе № 1.7.30 дано определение рабочего заземления: «рабочим называют заземление одной или нескольких точек токоведущих частей электроустановки, которое служит не в целях безопасности».

Такое заземление подразумевает электрический контакт с грунтом. Оно необходимо для нормальной эксплуатации электроустановки в штатном режиме.

Назначение функционального заземления

Для того чтобы понять, что называется рабочим заземлением, следует знать его основное назначение - устранение опасности удара током в случае соприкосновения человека к корпусу электроустановки или к её токоведущим частям, которые в данный момент находятся под напряжением.

Такая защита применяется в сетях с трёхфазной системой распределения тока. Изолированная нейтраль необходима для электросети, где напряжение не превышает 1 кВ. В сетях с напряжением свыше 1 кВ защитное заземление допускается делать с любым режимом нейтрали.

Как работает защитное (функциональное) заземление

Принцип действия функционального заземления заключается в снижении напряжения между корпусом, который в результате непредвиденной аварии оказался под током, и землёй до безопасной для человека величины.

Если корпус электроустановки, оказавшийся под током, не оснащён функциональным заземлением, то прикосновение человека к нему равносильно контакта с фазным проводом.

Если учесть, что сопротивление обуви человека, который дотронулся до электроустановки, и пола, на котором он стоит, ничтожно мала относительно земли, то ток может достигнуть опасной величины.

При правильной работы функционального заземления ток, проходящий через человека, будет безопасным. Напряжение во время прикосновения также будет незначительным. Основная часть электроэнергии будет уходить через заземляющий проводник в землю.

Различия между рабочим и защитным заземлениями

Рабочее и защитное заземление отличается друг от друга прежде всего назначением. Если первое необходимо для обеспечения правильной и бесперебойной работы электрооборудования, то второе служит для защиты людей от Также оно защищает и оборудование от поломок в случае пробоя какого-нибудь электрического прибора на корпус. Если здание оборудовано громоотводом, такой тип заземления защитит приборы от перегрузки в случае удара молнии.

Рабочее заземление электроустановок, в случае возникновения сыграет роль защитного, но основная её функция - обеспечение правильной бесперебойной работы электрооборудования.

В неизменном виде функциональное заземление применяют только на промышленных объектах. В жилых домах используется заземляющий проводник, который подводится к розетке. Однако есть бытовые приборы в доме, которые таят в себе потенциальную опасность для потребителя, поэтому не будет лишним заземлить их, используя

Домашние приборы, которые требуется подключить к рабочему заземлению:

  1. Микроволновка.
  2. Духовка и плита, которые работают за счёт электричества.
  3. Стиральная машина.
  4. Системный блок персонального компьютера.

Конструкция заземления

Рабочее заземление представляет собой вбитые в землю железные штыри, играющие роль проводников, на глубину около 2-3 метров.

Такие металлические прутья соединяют заземлительные клеммы электрооборудования с шиной заземления, тем самым образуя металлосвязь.

Металлосвязь есть в каждом жилом доме. Это сварная железная конструкция, которая соединяет друг с другом верхние концы заземлителей. Её заводят к вводному щитку дома для дальнейшей разводки по квартирам.

В качестве заземляющего проводника используют шину или провод с сечением не менее 4 кв. мм, окрашенные в жёлтые и зелёные полосы. Кабель в основном используют для переноса функционального заземления от шины к шине.

В целях безопасности проводится периодическая проверка электронного сопротивления металлической связи заземления. Оно измеряется от клеммы заземления электроустановки до наиболее удалённого от неё наземного контура заземления. Показатель сопротивления в любой части рабочего заземления не должен превышать 0,1 Ом.

Для чего делают несколько заземлителей

Электроустановку нельзя оснащать только одним заземлителем, поскольку почва является нелинейным проводником. Сопротивление земли находится в сильной зависимости от напряжения и площади контакта с воткнутыми штырями рабочего заземления. У одного заземлителя площадь контакта с почвой будет недостаточной, чтобы обеспечить бесперебойную работу электроустановки. Если установить 2 заземлителя на расстоянии в несколько метров друг от друга, то появляется достаточная площадь контакта с землёй. Однако следует помнить, что разносить слишком далеко металлические части заземления нельзя, поскольку связь между ними прервётся. В итоге останется только два отдельно установленных в почву заземлителя, никак не связанных друг с другом. Оптимальное расстояние между двумя контурами заземления составляет 1-2 метра.

Как нельзя осуществлять заземление

Согласно параграфу 1.7.110 ПУЭ, запрещается использовать в качестве рабочего заземления любые виды трубопроводов. Кроме того, запрещено выводить заземляющий кабель наружу и подключать его к неподготовленной контактной площадке на шине. Такой запрет объясняется тем, что каждый металл имеет свой индивидуальный потенциал. При воздействии внешних факторов образуется гальванический пар, который способствует процессу электроэрозии. Коррозия может распространиться под оболочку заземляющего провода, что повышает опасность его оплавления во время подачи больших токов на контур заземления в случае аварии. Специальная защитная смазка предотвращает разрушение металла, но действует она лишь в сухом помещении.

Также ПУЭ запрещает осуществлять поочерёдное заземление электроустановок друг с другом, подключать более одного кабеля на одну площадку заземляющей шины. Если пренебречь такими правилами, то в случае аварии на одной установке она будет создавать помехи в работе соседа. Такое явление называется электрической несопоставимостью. При неправильном подключении рабочего заземления работы по устранению недостатков опасны для жизни.

Требования к заземляющим конструкциям

Чтобы разобраться в том, что называется рабочим заземлением, а также какие требования предъявляются к таким конструкциям, следует знать, что для защиты людей от удара электрическим током, напряжение которого не превышает 1000 В, необходимо заземлять абсолютно все металлические части электрооборудования. Немаловажно, чтобы все конструкции, построенные в целях заземления, отвечали всем нормам безопасности, предъявляемым для обеспечения нормальной работоспособности сетей и дополнительных предохранителей от возможной перегрузки.

Опасность соприкосновения с токоведущими частями

При контакте человека с токоведущими частями электрической цепи или с металлическими конструкциями, которые оказались под напряжением в результате нарушения изоляционного слоя кабеля, возможно поражение электрическим током. Полученная травма проявляется в виде ожога на кожном покрове. От такого удара человек может потерять сознание, возможна остановка дыхания и сердца. Встречаются случаи, когда удар тока при малом напряжении приводит к смерти человека.

Меры предосторожности от поражения током

Чтобы максимально обезопасить людей от контакта с токоведущими частями электроустановки, а также с её металлическими частями, необходимо полностью изолировать опасный объект. Для этого устанавливают различные ограждения вокруг электроустановок.