10.03.2019

Ремонт элементов поверхностей нагрева без их демонтажа. Алгоритм организации профилактического технического обслуживания поверхностей нагрева котлов


Ремонт мембранных поверхностей нагрева →
  • -выработавшие свой ресурс или имеющие повреждения и дефекты, превышающие допустимые величины и не устраняемые ремонтом на месте установки, не обеспечивающие надежную работу котла до следующего ремонта, при котором возможна замена элементов;
  • -заглушенные, закороченные и восстановленные по другим временным схемам в период проведения текущих и неплановых ремонтов.

Независимо от способа замены трубных элементов (россыпью или блочным методом) соблюдают следующие общие технические требования.

Новые трубные элементы из легированной стали, а также их опоры, подвески, хомуты и другие детали креплений из жаростойких сталей, предназначенные для работы в зоне температур, превышающих 450 °С, перед установкой на место подвергаются стилоскопированию.

Все трубные элементы с котлостроительного или ремонтного завода, а также изготовленные в условиях производственной базы ремонтного предприятия и на ремонтной площадке электростанции и хранившиеся на складе, подлежат проверке в соответствии с техническими условиями на изготовление и поставку. Перед установкой их подвергают гидропрессовке, продувке сжатым воздухом и прогонке контрольным шаром.

Демонтаж заменяемых элементов начинают после закрепления других частей поверхности нагрева с тем, чтобы последние не нарушили своего проектного положения.

Дефектные участки вырезают по предварительной разметке. Разметку наносят на неповрежденное место на расстоянии 100 мм или более от зоны повреждения и не менее 50 мм от приваренной детали.

Трубы вырезают механическим способом. Огневая резка допускается в виде исключения в труднодоступных местах при условии последующего удаления грата из оставшихся нижних трубных элементов и тщательного контроля за их чистотой.

Огневая резка допускается также при одновременном удалении нижних частей труб.

Обрезку труб следует производить от начала гиба или от наружной поверхности барабана и коллектора, а также от края опоры для котлов с давлением до 6,0 МПа на расстоянии 50 мм, для котлов с давлением выше 6,0 МПа – на расстоянии не менее 70 мм.

Трубы, приваренные к штуцерам коллекторов и барабанов, обрезают по сварному шву.

Обработку торцов труб, стыковку, сварку и термическую обработку выполняют в соответствии с техническими условиями.

Установку новых элементов поверхностей нагрева выполняют с соблюдением требований, обеспечивающих возможность свободного их теплового расширения и удлинения на величину и в направлении, указанные в чертежах. Устанавливаемые новые блоки экранов и змеевиковых поверхностей нагрева не должны иметь отклонений от проектных размеров.

Установленные блоки экранов, конвективного и ширмового пароперегревателей и переходной зоны прямоточных котлов не должны иметь отклонений от проектных размеров, превышающих приведенные в табл. 9.3.

Таблица 9.3. Допуски при монтаже блоков экранов и пароперегревателей
Замеряемая величина Допускаемое отклонение, мм
Экраны
Разность высотных отметок торцов коллекторов по гидроуровню 2
Расстояние между осями коллекторов и осями соответствующих основных колонн каркаса котла 5
Расстояние между осями труб крайних змеевиков и колонн каркаса котла 5
Расстояние между осями крайних труб соседних блоков 2
Пароперегреватели
Расстояние между коллекторами в вертикальном и горизонтальном направлениях 5
Разность высот торцов коллекторов ширм по гидроуровню 3
Расстояние между ширмами (измеряется у нижнего конца) 20
Отклонение ширм от вертикали (измеряется по отвесу у нижнего конца) 10
Расстояние между осью коллектора ширмы и осями колонн каркаса котла 5

При массовой замене труб перед их установкой проверяют взаимное положение коллекторов, их высотные отметки, горизонтальность и привязку к барабану или основным элементам каркаса, устраняют смещения, превышающие допуски.

При установке экранных труб правильное их дистанционирование обеспечивают в необходимых случаях путем установки дистанционных планок шириной до 20 мм, располагая их по высоте в два-три пояса.

Расстояние между поясами до 6 м, высота планки, мм,

h = t – d – 1 ,

где: t – шаг трубы, мм;

d – диаметр труб, мм.

В местах прохода труб через обмуровку должна быть обеспечена свобода для температурных перемещений труб в соответствии с указаниями на чертежах. Эти места уплотняются листовым или шнуровым асбестом.

Стыковка труб с необходимой соосностью и обеспечением свободной усадки шва в процессе сварки обеспечивается применением специальных центровочных приспособлений. Прихватка и приварка сборочных и центровочных приспособлений к трубам не допускаются.

Перед установкой труб на место наружную поверхность концов труб, а также поверхность барабанов и коллекторов вокруг трубных отверстий на ширине не менее 20 мм и стенки трубных отверстий на всю глубину очищают от коррозии, накипи, шлама и других загрязнений.

При сварке монтажных стыков труб, монтируемых с предварительной холодной растяжкой, компенсирующей термическое удлинение труб, растяжку на величину, предусмотренную в чертежах, обеспечивают при помощи приспособлений, состоящих из хомутов или зажимов и стяжных винтов.

Простейшие и надежные способы строповки труб, змеевиков и трубных блоков приведены на рис. 9.15–9.19.

Рис. 9.15. Строповка отдельных труб: а – петлей при подъеме в горизонтальном положении; б – задвижным штыком при подъеме в горизонтальном положении; в – при подъеме в вертикальном положении

Рис. 9.16. Строповка пучка труб: а – универсальными стропами; б – двухпетельными стропами

Рис. 9.17. Строповка змеевика экономайзера: а – двухпетлевыми стропами; б – при помощи траверсы

Рис. 9.18. Строповка змеевика пароперегревателя

Рис. 9.19. Строповка блока змеевиков

Причинами выхода из строя поверхностей нагрева могут быть упуск воды по причине, не сработавшей автоматики, человеческий фактор, не правильная консервация в меж отопительный период, не корректно работающая система ХВО, не качественные материалы, примененные при изготовлении или ремонте. Все эти причины и еще ряд других, являются виновниками останова котла на значительный срок, а следовательно и прекращение теплоснабжения или выработки пара. Эта ситуация не так болезненна на предприятиях, где есть резервные котлы. Но тем, кто работает без резерва, намеренно или вынуждено, выход котла из строя по причине разрывов или образования свищей в экранных, дымогарных, жаровых, конвективных трубах и трубах пароперегревателя, может повлечь за собой значительный материальный ущерб.

Замена труб поверхностей нагрева не должна выполняться только после образования свищей и разрыва труб. Эта операция должна быть заранее запланирована и выполняться в период останова котлов, по итогам технического диагностирования, технического освидетельствования и осмотров. Перед ремонтом необходимо произвести очистку внутренних и наружных поверхностей труб. Работы проводятся после останова и расхолаживания котла до температуры не выше 40°С.

Замена труб поверхностей нагрева одно из направлений монтажного отдела ООО «ЭВОЛИ ПЛЮС». Специалисты компании выполняется замена труб поверхностей нагрева паровых и водогрейных котлов, водотрубных и жаротрубных. В рамках замены труб поверхностей нагрева выполняется весь спектр работ, разборка обмуровки, демонтаж старых труб поверхностей нагрева, монтаж новых, проведение гидравлического испытания, восстановление обмуровки и ее просушка, проведение внеочередного освидетельствование котла с соответствующей записью в паспорте котла.

Располагая собственной производственной базой, монтажным отделом выполняется подготовка труб для котлов любого типа. При необходимости гнутье по шаблонам и предварительная подготовка.

Замена труб поверхностей нагрева выполняется специалистами монтажного отдела, имеющими все необходимые аттестации и обучения. Компания располагает всеми разрешающими документами и свидетельством СРО, аттестацией технологии сварки НАКС.

На счету ООО «ЭВОЛИ ПЛЮС» значительное количество успешно выполненных работ по замене труб поверхностей нагрева, как паровых, так и водогрейных на различных видах топлива и различной мощности и конструкций.

ООО «ЭВОЛИ ПЛЮС» выполнит для Вас замену труб поверхностей нагрева, экранных труб, труб конвективных пучков, труб пароперегревателей и дымогарных труб. Для этого достаточно связаться с нашими специалистами любым удобным для Вас способом и обсудить техническое задание.

Наиболее часто встречаемыми повреждениями поверхностей нагрева паровых котлов являются свищи, отдулины, трещины и разрывы трубных элементов, которые могут быть вызваны различными причинами.[ ...]

Перегрев металла вызывает изменение его структуры, снижение механических свойств и повышенное окалинообразование. В соответ-ствии с инструкцией по наблюдению и контролю за металлом трубопроводов и котлов для повышения эксплуатационной надежности и предупреждения повреждений оборудования за состоянием металла различных участков паровых котлов и трубопроводов устанавливают систематический контроль.[ ...]

Регулярная обработка суточных графиков температуры пара за каждым котлом позволяет своевременно учитывать (при температуре пара 450 °С и выше) время работы при превышении температуры пара выше номинальной. Во время ремонтов, а также при останове котлов для внутренних осмотров и гидравлических испытаний выполняют тщательный осмотр труб поверхностей нагрева и их сварных соединений для выявления труб, имеющих большую остаточную деформацию, коррозию, золовой износ, трещины в сварных соединениях, недопустимую овальность и другие дефекты. Эти данные анализируются лабораторией металлов, которая также ведет контроль за ростом остаточных деформаций труб пароперегревателей, выполненных из легированных сталей.[ ...]

На основе анализа условий работы металла и причин повреждений руководство эксплуатирующего предприятия разрабатывает мероприятия по предотвращению повреждений труб поверхностей нагрева.[ ...]

Остаточная деформация определяется по отношению к номинальному наружному диаметру.[ ...]

На пароперегревателях котлов, работающих с температурой пара 540 °С и выше, устанавливают контроль за изменением структуры, свойств металла и окалинообразования. Этот контроль ведут по контрольным участкам в обогреваемой зоне пароперегревателя в местах наиболее высоких температур.[ ...]

Рост остаточных деформаций труб поверхностей нагрева может быть вследствие либо перегрева металла, либо его ползучести. Повреждения труб могут быть также вследствие коррозионного износа (наружной или внутренней поверхностей), окалинообразования, эолового износа или износа от воздействия струи пара из обдувочного аппарата.[ ...]

Для предупреждения повреждений труб поверхностей нагрева, вызванных коррозионным износом или окалинообразованием, важно обеспечить работу металла при температурах, не превышающих уста-новленные Руководящими указаниями по учету жаростойкости легированных сталей для труб поверхностей нагрева паровых котлов. Эти температуры приведены в табл. 4.1.[ ...]

Приведенные в табл. 4.1 значения температур установлены для вновь проектируемых котлов, однако соблюдение их на действующих котлах позволит повысить надежность работы котлов и снизить количество повреждений поверхностей нагрева. Соблюдение указанных температур обеспечивает эксплуатацию котлов с утонением трубных поверхностей нагрева на 1,0 мм за 100 тыс. ч.[ ...]

В период капитальных ремонтов котлоагрегатов проверяют состояние устройств, защищающих трубы от местного абразивного износа летучей золой, а также измеряют и фиксируют величину эолового, дробевого и коррозионного видов износа стенки трубы с наружной стороны. Если имеется подозрение на чрезмерный износ стенок труб, то делают контрольную вырезку отрезков и замеры утоненной части. Степень внутренней коррозии контролируют при осмотре образцов труб, вырезаемых на тех участках, где наблюдались коррозионные повреждения. Периодичность вырезок устанавливают исходя из коррозионной активности воды, но в любом случае их производят не реже одного раза в 5 лег. При износе, превышающем принятую прибавку к расчетной толщине стенки, труба (или ее часть) подлежит замене.[ ...]

Рисунки к данной главе:

Российское акционерное общество
энергетики и электрификации «ЕЭС РОССИИ»

МЕТОДИЧЕСКИЕ УКАЗАНИЯ
ПО ОРГАНИЗАЦИИ ТЕХНИЧЕСКОГО
ОБСЛУЖИВАНИЯ ПОВЕРХНОСТЕЙ НАГРЕВА КОТЛОВ
ТЕПЛОВЫХ ЭЛЕКТРОСТАНЦИЙ

РД 34.26.609-97

Срок действия установлен

с 01.06.98

РАЗРАБОТАНО Департаментом Генеральной инспекции по эксплуатации электростанций и сетей РАО «ЕЭС России»

ИСПОЛНИТЕЛЬ В.К. Паули

СОГЛАСОВАНО с Департаментом науки и техники, Департаментом эксплуатации энергосистем и электростанций, Департаментом технического перевооружения, ремонта и машиностроения «Энергореновация»

УТВЕРЖДЕНО РАО «ЕЭС России» 26.02.97

Вице-президент О.В. Бритвин

Настоящими Методическими указаниями устанавливается порядок организации технического обслуживания поверхностей нагрева котлов тепловых электростанций с целью введения в эксплуатационную практику эффективного малозатратного механизма обеспечения надежности поверхностей нагрева котлов.

I. Общие положения

Эффективный малозатратный механизм обеспечения надежности поверхностей нагрева котлов в первую очередь предполагает исключение отклонений от требований ПТЭ и другой НТД и РД при их эксплуатации, то есть существенное повышение уровня эксплуатации. Другое эффективное направление - это введение в практику эксплуатации котлов системы профилактического технического обслуживания поверхностей нагрева. Необходимость введения такой системы обусловлена рядом причин:

1. После проведения плановых ремонтов в эксплуатации остаются трубы или их участки, которые из-за неудовлетворительных физико-химических свойств или возможного развития дефектов металла попадают в группу «риска», что приводит к их последующему повреждению и остановам котлов. Кроме того, это могут быть проявления недостатков изготовления, монтажа и ремонта.

2. В процессе эксплуатации группа «риска» пополняется за счет недостатков эксплуатации, выраженных нарушениями температурного и водно-химического режимов, а также недостатками в организации защиты металла поверхностей нагрева котлов при длительных простоях из-за несоблюдения требований консервации оборудования.

3. По сложившейся практике на большинстве электростанций при аварийных остановах котлов или энергоблоков из-за повреждений поверхностей нагрева проводится только восстановление (или отглушение) поврежденного участка и устранение сопутствующих дефектов, а также дефектов на других участках оборудования, которые препятствуют пуску или нормальной дальнейшей эксплуатации. Такой подход, как правило, приводит к тому, что повреждения повторяются и происходят аварийные или неплановые остановы котлов (энергоблоков). В то же время с целью поддержания надежности поверхностей нагрева на допустимом уровне в плановые ремонты котлов выполняются специальные меры, включающие в себя: замену в целом отдельных поверхностей нагрева, замену их блоков (участков), замену отдельных элементов (труб или участков труб).

При этом используются различные методы расчета ресурса металла труб, по которым планируется их замена, однако в большинстве случаев основными критериями замены является не состояние металла, а частота повреждений, приходящихся на одну поверхность. Такой подход приводит к тому, что в ряде случаев происходит необоснованная замена металла, который по своим физико-химическим свойствам соответствует требованиям длительной прочности и мог бы еще оставаться в эксплуатации. А так как причина ранних повреждений в большинстве случаев остается неустановленной, то она снова примерно через такой же период эксплуатации проявляется и вновь ставит задачи замены тех же поверхностей нагрева.

Этого можно избежать, если комплексно применить методологию технического обслуживания поверхностей нагрева котлов, которая должна включать в себя следующие постоянно используемые составляющие:

1. Учет и накопление статистики повреждаемости.

2. Анализ причин и их классификация.

3. Прогнозирование предполагаемых повреждений на основе статистико-аналитического подхода.

4. Дефектация инструментальными методами диагностики.

5. Составление ведомостей объемов работ на ожидаемый аварийный, неплановый или плановый кратковременный останов котла (энергоблока) для текущего ремонта второй категории.

6. Организация подготовительных работ и входной контроль основных и вспомогательных материалов.

8. Контроль за проведением и приемка поверхностей нагрева после выполнения ремонтных работ.

9. Контроль (мониторинг) за эксплуатационными нарушениями, разработка и принятие мер по их предотвращению, совершенствование организации эксплуатации.

В той или иной степени поэлементно все составляющие методологии технического обслуживания на электростанциях используются, однако комплексного применения в достаточной степени еще нет. В лучшем случае производится серьезная выбраковка при проведении плановых ремонтов. Однако практика показывает необходимость и целесообразность введения системы профилактического технического обслуживания поверхностей нагрева котлов в межремонтный период. Это позволит в самый короткий срок существенно повысить их надежность при минимальных затратах средств, труда и металла.

Согласно основным положениям «Правил организации технического обслуживания и ремонта оборудования, зданий и сооружений электростанций и сетей» (РДПр 34-38-030-92) техническое обслуживание и ремонт предусматривают выполнение комплекса работ, направленного на обеспечение исправного состояния оборудования, надежной и экономичной его эксплуатации, проводимых с определенной периодичностью и последовательностью, при оптимальных трудовых и материальных затратах. При этом техническое обслуживание действующего оборудования электростанций рассматривается как выполнение комплекса мероприятий (осмотр, контроль, смазка, регулировка и т.п.), не требующих вывода его в текущий ремонт. В то же время в ремонтном цикле предусматривается Т2 - текущий ремонт второй категории с кратковременным плановым остановом котла или энергоблока. Количество, сроки и продолжительность остановов для Т2 планируются электростанциями в пределах норматива на Т2, который составляет 8 - 12 дополнительных суток (по частям) в год в зависимости от типа оборудования.

В принципе Т2 - это время, предоставляемое электростанции в межремонтный период для устранения накапливающихся в процессе эксплуатации мелких неисправностей. Но при этом, понятно, должно проводиться и техническое обслуживание ряда ответственных или «проблемных», имеющих сниженную надежность, узлов. Однако на практике из-за стремления обеспечить выполнение заданий по рабочей мощности в подавляющем большинстве случаев лимит Т2 оказывается исчерпан неплановыми остановами, при которых прежде всего ремонтируется поврежденный элемент и устраняются дефекты, препятствующие пуску и дальнейшей нормальной эксплуатации. Для целевого технического обслуживания времени не остается и не всегда готовятся и имеются ресурсы.

Сложившееся положение можно исправить, если принять как аксиому и использовать в практике следующие выводы:

Поверхности нагрева, как важный элемент, определяющий надежность котла (энергоблока), нуждаются в профилактическом техническом обслуживании;

Планирование работ должно производиться не только под зафиксированную в годовом графике дату, но и под факт непланового (аварийного) останова котла или энергоблока;

Регламент технического обслуживания поверхностей нагрева и объем предстоящих работ должен быть предопределен и доведен до всех исполнителей заранее не только до даты ожидаемого по плану останова, но и аналогично заблаговременно к любому возможному ближайшему аварийному (неплановому) останову;

Независимо от формы останова должен быть предопределен сценарий совмещения ремонтно-восстановительных, профилактических и диагностических работ.

II. Система статистического контроля надежности поверхностей нагрева котлов ТЭС

В управлении надежностью энергетического оборудования (в данном случае котлов) статистика повреждаемости играет существенную роль, так как позволяет получить всестороннюю характеристику надежности объекта.

Использование статистического подхода проявляется уже на первом этапе планирования мероприятий, направленных на повышение надежности поверхностей нагрева. Здесь статистика повреждаемости выполняет задачу прогнозирования критического момента как одного из признаков, определяющих необходимость принятия решения на замену поверхности нагрева. Однако анализ показывает, что упрощенный подход к определению критического момента статистики повреждаемости зачастую приводит к необоснованным заменам труб поверхностей нагрева, которые еще не исчерпали свой ресурс.

Поэтому важной частью всего комплекса задач, входящих в систему профилактического технического обслуживания, является составление оптимального объема конкретных работ, направленных на исключение повреждений поверхностей нагрева в условиях нормальной регламентной эксплуатации. Ценность технических средств диагностики несомненна, однако на первом этапе более целесообразен статистико-аналитический подход, который позволяет определить (очертить) границы и зоны повреждаемости и тем самым свести до минимума затраты средств и ресурсов на следующих этапах дефектации и профилактических превентивных замен труб поверхностей нагрева.

Для повышения экономической эффективности планирования объемов замены поверхностей нагрева необходимо учитывать основную цель статистического метода - повышение обоснованности выводов за счет использования вероятностной логики и факторного анализа, которые на основе совмещения пространственных и временных данных позволяют построить методологию повышения объективности определения критического момента на основании статистически связанных признаков и факторов, скрытых от непосредственного наблюдения. С помощью факторного анализа должна не просто устанавливаться связь событий (повреждений) и факторов (причин), но и определяться мера этой связи и выявляться основные факторы, лежащие в основе изменений надежности.

Для поверхностей нагрева важность этого вывода обусловлена тем, что причины повреждаемости действительно носят многофакторную природу и большое количество классификационных признаков. Поэтому уровень применяемой статистической методологии должны определять многофакторность, охват количественных и качественных показателей и постановка задач под желаемые (ожидаемые) результаты.

Прежде всего надежность следует представить в виде двух составляющих:

конструкционная надежность, определяемая качеством проектирования и изготовления, и эксплуатационная надежность, определяемая условиями эксплуатации котла в целом. Соответственно и статистика повреждаемости должна исходить также из двух составляющих:

Статистика первого рода - изучение опыта эксплуатации (повреждаемости) однотипных котлов других электростанций для представления очаговых зон на подобных котлах, что позволит отчетливо вычленить конструктивные недостатки. И в то же время это даст возможность увидеть и очертить для собственных котлов вероятностные очаговые зоны повреждаемости, по которым затем целесообразно «пройтись», наряду с визуальной дефектацией, средствами технической диагностики;

Статистика второго рода - обеспечение учета повреждений на собственных котлах. При этом целесообразно вести фиксированный учет повреждаемости на вновь устанавливаемых участках труб или участках поверхностей нагрева, который поможет выявить скрытые причины, приводящие к повторению повреждения через сравнительно короткое время.

Ведение статистики первого и второго рода обеспечит нахождение зон целесообразности применения средств технической диагностики и превентивной замены участков поверхностей нагрева. При этом необходимо вести также и целевую статистику - учет мест, отдефектованных визуально и средствами инструментальной и технической диагностики.

Методология использования статистических методов выделяет в себе следующие направления:

Описательная статистика, включающая в себя группировку, графическое представление, качественное и количественное описание данных;

Теория статистического вывода, используемая в исследованиях для предсказания результатов по данным обследования;

Теория планирования эксперимента, служащая для обнаружения причинных связей между переменными состояния исследуемого объекта на основе факторного анализа.

На каждой электростанции статистические наблюдения должны вестись по специальной программе, представляющей собой систему статистического контроля надежности - ССКН. В программе должны содержаться конкретные вопросы, на которые необходимо дать ответ в статистическом формуляре, а также обосновываются вид и метод проведения наблюдения.

Программа, характеризующая главную цель статистического исследования, должна носить комплексный характер.

Статистическая система контроля надежности должна включать в себя процесс накопления сведений о повреждениях, их систематизацию и нанесение на формуляры поверхностей нагрева, которые заведены независимо от ремонтных формуляров для имеющих повреждаемость поверхностей. В приложениях и для примера приведены формуляры конвективного и ширмового пароперегревателей. Формуляр представляет собой вид по развернутой части поверхности нагрева, на которой отмечается место повреждения (х) и ставится индекс, например 4-1, где первая цифра означает порядковый номер события, вторая цифра для конвективного пароперегревателя номер трубы в рядах при счете сверху, для ширмового пароперегревателя - номер ширмы по установленной для данного котла системе нумерации. В формуляре предусмотрена графа идентификации причин, куда вносятся результаты расследования (анализа) и графа мероприятий, направленных на предотвращение повреждений.

Использование средств вычислительной техники (персональных компьютеров, объединенных в локальную сеть) значительно повышает эффективность системы статистического контроля надежности поверхностей нагрева. При разработке алгоритмов и компьютерных программ ССКН целесообразно ориентироваться на последующее создание на каждой электростанции комплексной информационно-экспертной системы «Надежность поверхностей нагрева котлов».

Позитивные результаты статистико-аналитического подхода к дефектации и определению мест предполагаемых повреждений поверхностей нагрева заключаются в том, что статистический контроль позволяет определить очаги повреждений, а факторный анализ позволяет увязать их с причинами.

При этом надо учитывать, что метод факторного анализа имеет определенные слабые стороны, в частности, отсутствует однозначное математическое решение проблемы факторных нагрузок, т.е. влияния отдельных факторов на изменения различных переменных состояния объекта.

Это можно представить в виде примера: допустим, определили остаточный ресурс металла, т.е. имеем данные по математическому ожиданию повреждаемости, которое может быть выражено значением времени Т . Однако из-за случившихся или постоянно имеющих место нарушений условий эксплуатации, т.е. создания условий «риска» (например, нарушение водно-химического или температурного режима и т.п.), повреждения начинаются через время t , значительно меньшее по сравнению с ожидаемым (расчетно полученным).

Поэтому основная цель статистико-аналитического подхода заключается прежде всего в том, чтобы при сложившемся уровне повреждаемости в условиях существующего эксплуатационного и ремонтного обслуживания обеспечить реализацию программы профилактического технического обслуживания поверхностей нагрева котлов на основании обоснованной информации и экономически целесообразной базы для принятия решений.

III. Организация расследования причин повреждений (повреждаемости) поверхностей нагрева котлов ТЭС

Важной частью организации системы профилактического технического обслуживания поверхностей нагрева котлов является расследование причин повреждений, которое должно проводиться специальной профессиональной комиссией, утвержденной приказом по электростанции под председательством главного инженера. В принципе, комиссия к каждому случаю повреждения поверхности нагрева должна подходить как к чрезвычайному событию, сигнализирующему о недостатках в технической политике, проводимой на электростанции, о недостатках в управлении надежностью энергетического объекта и его оборудования.

В состав комиссии включаются: заместители главного инженера по ремонту и по эксплуатации, начальник котлотурбинного (котельного) цеха, начальник химического цеха, начальник лаборатории металлов, начальник ремонтного подразделения, начальник отдела планирования и подготовки ремонта, начальник цеха (группы) наладки и испытаний, начальник цеха тепловой автоматики и измерений и инспектор по эксплуатации (в отсутствие первых лиц в работе комиссии участвуют их заместители).

В своей работе комиссия руководствуется накопленным статистическим материалом, выводами факторного анализа, результатами идентификации повреждений, заключениями специалистов-металловедов, данными, полученными при визуальном осмотре и результатами дефектации средствами технической диагностики.

Основной задачей назначенной комиссии является расследование каждого случая повреждения поверхностей нагрева котла, составление и организация выполнения объема превентивных мер по каждому конкретному случаю и разработка мероприятий по предотвращению повреждений (согласно разделу формы акта расследования), а также организация и контроль за их исполнением. С целью повышения качества расследования причин повреждаемости поверхностей нагрева котлов и их учета в соответствии с изменением № 4 к Инструкции по расследованию и учету технологических нарушений в работе электростанций, сетей и энергосистем (РД 34.20.101-93) расследованию подлежат разрывы и свищи поверхностей нагрева, происшедшие или выявленные во время работы, простоя, ремонта, опробования, профилактических осмотров и испытаний независимо от времени и способа их выявления.

Одновременно эта комиссия является экспертным советом электростанции по проблеме «Надежность поверхностей нагрева котлов». Члены комиссии обязаны изучать и пропагандировать среди подчиненных им инженерно-технических работников публикации, нормативно-техническую и распорядительную документацию, научно-технические разработки и передовой опыт, направленные на повышение надежности котлов. В задачу комиссии также входит обеспечение выполнения требований «Экспертной системы контроля и оценки условий эксплуатации котлов ТЭС» и устранение выявленных замечаний, а также составление долговременных программ повышения надежности, организация их исполнения и контроль.

IV. Планирование превентивных мер

Существенную роль в системе профилактического технического обслуживания играет:

1. Планирование оптимального (для кратковременного останова) объема превентивных мер в очаговых зонах (зонах риска), определенных статистической системой контроля надежности, который может включать в себя: замену прямых участков труб, переварку или усиление контактных и композитных стыков, переварку или усиление угловых стыков, замену гибов, замену участков в местах жестких креплений (сухарей), замены целых участков, восстановление ранее отглушенных труб и змеевиков и т.п.

2. Устранение повреждений, которые вызвали аварийный (неплановый) останов, или повреждений, выявленных во время и после останова котла.

3. Дефектация (визуальная и средствами технической диагностики), которая выявляет ряд дефектов и формирует определенный дополнительный объем, который должен разбиваться на три составляющие части:

а) дефекты, подлежащие устранению в предстоящий (ожидаемый), плановый или аварийный останов;

б) дефекты, требующие дополнительной подготовки, если они не вызывают близкой опасности возникновения повреждения (довольно условная оценка, необходимо оценивать с учетом профессиональной интуиции и известных методов оценки скорости развития дефекта), включаются в объем работ на следующий ближайший останов;

в) дефекты, которые не приведут к повреждениям в межремонтный период, но обязательно должны быть устранены в ближайшую ремонтную кампанию, включаются в объемы работ на предстоящий текущий или капитальный ремонт.

Наиболее распространенным инструментальным средством дефектации труб поверхностей нагрева становится метод диагностики, основанный на использовании магнитной памяти металла, который уже показал себя в качестве эффективного и простого средства выявления (отбраковки) труб и змеевиков, входящих в «группу риска». Так как при этом виде диагностики не требуется специальной подготовки поверхностей нагрева, он стал привлекать эксплуатационников и широко входить в практику.

Наличие в металле труб трещин, зарождающихся в местах повреждения окалины, выявляется также средствами ультразвукового контроля. Ультразвуковые толщиномеры позволяют своевременно обнаружить опасное утонение стенки металла труб. В определении степени воздействия на наружную стенку металла труб (коррозия, эрозия, абразивный износ, наклеп, окалинообразование и т.п.) существенную роль играет визуальная дефектация.

Наиболее важной частью этого этапа является определение количественных показателей, на которые необходимо ориентироваться при составлении объема на каждый конкретный останов: времени простоя и стоимости затрат на выполнение работ. Здесь необходимо прежде всего преодолеть ряд сдерживающих причин, которые в той или иной степени имеют место в реальной практической деятельности:

Психологический барьер у руководителей электростанций и начальников цехов, воспитанных в духе необходимости срочного возврата котла или энергоблока в работу, вместо того чтобы использовать этот аварийный или неплановый останов в достаточной для обеспечения надежности поверхностей нагрева степени;

Психологический барьер технических руководителей, не позволяющий развернуть объемную программу в короткий промежуток времени;

Неумение обеспечить мотивацию как собственного персонала, так и персонала подрядных организаций;

Недостатки в организации подготовительных работ;

Низкая коммуникабельность руководителей смежно взаимосвязанных подразделений;

Недостаток уверенности в возможности преодоления проблемы повреждаемости поверхностей нагрева превентивными мерами;

Недостаток организационных навыков и волевых качеств или квалификации у технических руководителей (главных инженеров, их заместителей и начальников подразделений).

Это дает возможность вести планирование физических объемов работ для котлов с повышенной повреждаемостью поверхностей нагрева под максимальную возможность их выполнения, учитывающую длительность останова, сменность и обеспечение условий безопасного совмещения работ.

Включение в систему профилактического технического обслуживания поверхностей нагрева котлов входного, текущего контроля и контроля качества выполненных ремонтных работ существенно повысит качество выполняемых профилактических и аварийно-восстановительных работ. Анализ причин повреждений показывает ряд существенных распространенных при выполнении ремонтных работ нарушений, наиболее значимые из которых по своим последствиям:

Входной контроль основных и сварочных материалов проводится с отступлениями от требований п. 3.3 и 3.4 Руководящего документа по сварке, термообработке и контролю трубных систем котлов и трубопроводов при монтаже и ремонте оборудования электростанций (РТМ-1с-93);

В нарушение требований п. 16.7 РТМ-1с-93 не выполняется контроль прогонкой шаром с целью проверки обеспечения заданного проходного сечения в сварных соединениях труб поверхностей нагрева;

В нарушение требований п. 3.1 РТМ-1с-93 к работе на поверхностях нагрева допускаются сварщики, не аттестованные на этот вид работ;

В нарушение требований п. 6.1 РТМ-1с-93 при аварийно-восстановительных работах корневой слой сварного шва выполняется ручной дуговой сваркой покрытыми электродами вместо аргоно-дуговой сварки. Подобные нарушения выявляются на ряде электростанций и при плановых ремонтах;

В нарушение требований п. 5.1 Руководства по ремонту котельного оборудования электростанций (технология и технические условия ремонта поверхностей нагрева котельных агрегатов) вырезка дефектных труб или их участков производится средствами огневой резки, а не механическим способом.

Все эти требования должны быть четко обозначены в местных инструкциях по ремонту и техническому обслуживанию поверхностей нагрева.

В программе превентивных мер следует предусматривать при замене участков труб или участков поверхностей нагрева в «зонах риска» использование марок сталей высшего класса по сравнению с установленными, так как это позволит в значительной степени повысить ресурс работы металла в зоне повышенной повреждаемости и выровнять ресурс поверхности нагрева в целом. Например, использование жаропрочных аустенитных хромомарганцевых сталей (ДИ-59), отличающихся большей стойкостью к окалинообразованию, наряду с повышением надежности пароперегревателей позволит ослабить процесс абразивного износа элементов проточной части турбин.

V. Профилактические и предупредительные меры

Объем профилактических работ, выполняемых в кратковременный плановый для Т2 или аварийный останов не должен замыкаться только собственно на поверхности нагрева котла. Одновременно должно производиться выявление и устранение дефектов, напрямую или косвенно влияющих на надежность поверхностей нагрева.

В это время необходимо, максимально используя представленную возможность, провести комплекс проверочных мероприятий и конкретных мер, направленных на ликвидацию негативных технологических проявлений, снижающих надежность поверхностей нагрева. Исходя из состояния оборудования, уровня эксплуатации, технологических и конструктивных особенностей, для каждой электростанции перечень этих действий может быть свой, однако обязательными должны являться следующие работы:

1. Определение плотности трубной системы конденсатора и сетевых подогревателей с целью обнаружения и устранения мест попадания в конденсатный тракт сырой воды. Проверка плотности вакуумных гидрозатворов.

2. Проверка плотности арматуры на байпасе блочной обессоливающей установки. Контроль исправности устройств, препятствующих выносу фильтрующих материалов в тракт. Контроль фильтрующих материалов на замасливание. Проверка наличия масляной пленки на поверхности воды в баке нижних точек.

3. Обеспечение готовности подогревателей высокого давления к своевременному включению при пуске энергоблока (котла).

4. Устранение дефектов на пробоотборных устройствах и устройствах подготовки пробы конденсата, питательной воды и пара.

5. Устранение дефектов температурного контроля металла поверхностей нагрева, среды по тракту и газов в поворотной камере котла.

6. Устранение дефектов систем автоматического регулирования процесса горения и температурного режима. При необходимости улучшение характеристик регуляторов впрысков, питания котла и топлива.

7. Осмотр и устранение дефектов на системах пылеприготовления и пылеподачи. Осмотр и устранение прогаров на насадках газовых горелок. Подготовка к предстоящей растопке оттарированных на стенде мазутных форсунок.

8. Выполнение работ, направленных на снижение пароводяных потерь, снижение присосов воздуха в вакуумную систему, снижение присосов воздуха в топку и газовый тракт котлов, работающих под разряжением.

9. Осмотр и устранение дефектов обмуровки и обшивы котла, креплений поверхностей нагрева. Рихтовка поверхностей нагрева и устранение защемлений. Осмотр и устранение дефектов на элементах систем обдувки и дробеочистки поверхностей нагрева.

10. Для барабанных котлов, кроме того должно производиться:

Устранение нарушений в работе внутрибарабанных сепарационных устройств, которые могут приводить к уносу капель котловой воды с паром;

Устранение неплотностей конденсаторов собственного конденсата;

Подготовка условий, обеспечивающих подпитку котлов только обессоленной водой (ужесточение требования п. 1.5 Методических указаний по коррекционной обработке барабанных котлов давлением 3,9 - 13,8 МПа: РД 34.37.522-88);

Организация подачи фосфатов по индивидуальной схеме с целью обеспечения качества коррекционной обработки котловой воды (ужесточение требований п. 3.3.2 в РД 34.37.522-88 в связи с тем, что базовый режим однотипных котлов, как правило, не обеспечивается);

Обеспечение исправности продувочных устройств.

11. Подготовка условий, обеспечивающих заполнение котлов для опрессовки и последующей растопки только обессоленной водой или конденсатом турбин. Перед растопкой барабанные котлы и прямоточные котлы, эксплуатируемые на гидразинном и гидразинно-аммиачном режимах, должны заполняться только деаэрированной водой. С целью удаления неконденсирующихся газов, способствующих образованию коррозионно-агрессивных примесей, заполнение перед растопкой прямоточных котлов, эксплуатируемых на нейтрально-кислородном и кислородно-аммиачном режимах, должно производиться в режиме деаэрации (ужесточение требований п. 4.3.5 ПТЭ).

12. При наружной водной отмывке поверхностей нагрева, используемой для подготовки их к ремонту, необходимо производить последующую сушку котла с целью предотвращения коррозии металла наружной поверхности труб. При наличии на электростанции газа, сушка производится растопкой котла на газе (на 1 - 2 часа), при отсутствии газа - тяго-дутьевыми механизмами при включении калориферов котла.

13. Важную роль в обеспечении надежности поверхностей нагрева котлов играет метрологическое обеспечение - калибровка средств измерений температуры среды по тракту, металла поверхностей нагрева и газов в поворотной камере. Калибровка перечисленных средств измерений (термопар, измерительных каналов и вторичных приборов, в том числе входящих в систему АСУ ТП) должна производиться по графику калибровки в соответствии с пп. 1.9.11. и 1.9.14 ПТЭ. Если эти требования ранее не выполнялись, то необходимо в остановы котлов (энергоблоков) проводить поэтапную калибровку измерительных средств перечисленных параметров, так как даже незначительные погрешности в сторону занижения показаний существенно влияют на снижение ресурса металла и, соответственно, снижают надежность поверхностей нагрева.

VI. Выводы

1. Серьезные финансовые затруднения всех электростанций отрасли не позволяют в достаточной степени решать вопросы своевременного воспроизводства основных фондов, важной задачей эксплуатационников становится целенаправленный поиск возможностей и методов сохранения ресурса и обеспечения надежной работы энергетического оборудования. Реальная оценка ситуации на электростанциях отрасли показывает, что далеко не все резервы и возможности в этом направлении исчерпаны. А внедрение в эксплуатационную практику комплексной системы профилактического технического обслуживания, вне всякого сомнения, позволит существенно снизить ремонтно-эксплуатационные затраты на производство электрической и тепловой энергии и обеспечить надежность поверхностей нагрева котлов ТЭС.

2. Наряду с выявлением и устранением повреждений труб поверхностей нагрева и предупреждающей превентивной заменой зон «риска», выявленных на основании статистико-аналитического подхода и дефектации (визуальной и инструментальной), в системе профилактического технического обслуживания значительная роль должна отводиться исключению (смягчению) негативных проявлений от недостатков организации эксплуатации. Поэтому программа профилактического технического обслуживания поверхностей нагрева котлов должна строиться по двум параллельным направлениям (приложение ):

Обеспечение текущей (немедленной) надежности поверхностей нагрева котлов;

Создание условий, обеспечивающих длительную (перспективную) надежность (увеличение ресурса) поверхностей нагрева котлов.

3. В организации комплексной системы профилактического технического обслуживания поверхностей нагрева ведущее значение имеют знания в этой области руководителей, главных специалистов и инженерно-технических работников. Для расширения кругозора и учета в практической деятельности отраслевого опыта по обеспечению надежности поверхностей нагрева котлов целесообразно на каждой электростанции составить подборку материалов по проблеме и организовать их изучение соответствующим персоналом.


ПРИЛОЖЕНИЕ 1

Рис. 1. Формуляр повреждений КПП ВД котел № 1, нитка - А

Результаты расследования (идентификации) повреждений

1. Дата. Позиция № 1-2. Бездеформационный разрыв прямого участка трубы из стали 12Х18Н12Т, раскрытие по верхней образующей вдоль трубы. Исследование вырезанного вблизи от места повреждения образца показало, что структура стали соответствует требованиям ТУ, но на внутренней поверхности отчетливо видны повреждения окалины с образованием продольных трещин, переходящих в металл.

2. Дата. Позиция № 2-1. Бездеформационный разрыв прямого участка трубы из стали 12Х18Н12Т, раскрытие по верхней образующей трубы. В зоне повреждения и на соседних трубах отчетливо видны следы наклепа и износа дробью. Металлографический анализ показал, что причиной разрыва трубы из аустенитной стали явился интенсивный наклеп дробью из-за отрыва рассекателя устройства верхнего заброса дроби.

3. Дата. Позиция № 3-6. Бездеформационный разрыв на нижней образующей трубы из стали 12Х1МФ. Исследование поврежденного участка показало значительную язвенную коррозию по нижней образующей внутренней поверхности трубы из-за неудовлетворительной сухой консервации при остановах котлоагрегата, усугубленной провисом змеевика из-за износа «петушков» подвесной системы.

1. При каждом останове проводить поэтапный магнитный контроль труб выходных участков змеевиков. Отдефектованные трубы включать в ведомости технического обслуживания на каждый останов котлоагрегата. Разработать программу повышения качества оксидной защитной пленки: повышение качества водного и температурного режимов, освоение пароводокислородной обработки и пр.

2. С целью предотвращения повреждения аустенитных труб из-за интенсивного наклепа дробью при отрыве рассекателя остановки верхнего заброса обязать персонал перед проведением дробеочистки производить проверку исправности дробеметов (указания в инструкции вносятся в зависимости от конструкции, если она не позволяет, то проверяет ремонтный персонал при остановах).

3. В остановы котлоагрегатов осуществлять осмотр и восстановление креплений змеевиков пароперегревателя на подвесной системе заменой участков труб подвесной системы с «петушками» (стыки делаются выше и ниже пароперегревателя). Повысить качество «вакуумной сушки». Продумать целесообразность внедрения ПВКО.

4. Дата. Позиция № 4-4. Разрыв трубы из стали 12Х1МФ в месте прохода через обмуровку между конвективной частью и «теплым ящиком». В месте разрыва значительная наружная коррозия металла. Причина повреждения: воздействие стояночной коррозии серной кислотой, образовывающейся при водных отмывках конвективной шахты перед выводом котла в плановые ремонты.

4. С целью исключения наружной коррозии труб в местах прохода через обмуровку серной кислотой, образующейся при наружных отмывках поверхностей нагрева, ввести практику просушивания котла после каждой такой отмывки растопкой его на газе или горячим воздухом дутьевых вентиляторов при включенных калориферах.

5. Дата. Позиция № 5-2. Продольный разрыв по наружной образующей гиба («калача»). Металлографический анализ показал, что при ремонте (дата) был установлен гиб, не прошедший аустенизацию после изготовления ремонтным персоналом (аналогичные нарушения могут быть и по вине заводов-изготовителей).

6. Дата. Позиция № 6-1. Деформационный (пластичный) разрыв в районе контактного стыка. Металлографический анализ металла дефектного участка показал исчерпание ресурса длительной прочности в зоне термовлияния. Металлографический анализ металла дефектного участка показал исчерпание ресурса длительной прочности в зоне термовлияния. Металлографический анализ металла трубы на расстоянии один метр от места повреждения показал, что структура металла также не соответствует требованиям длительной прочности по ТУ. Данный змеевик расположен в разреженной части перегревательной поверхности, обусловленной недостатками конструкции в зоне стыка на коллекторе.

5. Повысить качество входного контроля поставляемых с завода изделий. Не допускать установку гибов, не прошедших аустенизацию. Произвести проверку ремонтной документации, выявить всю партию неаустенизированных гибов и заменить в ближайшие остановы (или при ремонте).

6. Провести магнитный контроль труб, расположенных в разреженной части, по результатам дефектации произвести в первую очередь замену труб, подверженных максимальному влиянию температур, превышающих допустимый уровень. Остальные трубы зоны «газового коридора» заменить в ближайший плановый ремонт. Изучить опыт родственных электростанций и запросить завод-изготовитель о предоставлении информации по возможности реконструкции разреженной части в зонах стыков на коллекторах.

7. Дата. Позиция № 7-3. Повреждение композитного сварного стыка. Расследование показало наличие защемления трубы в месте ее прохода через перегородку между конвективной шахтой и «теплым ящиком», вызванного «наплывами» бетона.

7. Произвести осмотр всех мест прохода труб пароперегревателя через обмуровку, обнаруженные места защемлений очистить. Повысить качество обмуровочных работ, обеспечить необходимый контроль при приемке.

ПРИЛОЖЕНИЕ 2

Результаты расследования (идентификации) повреждений

1. Дата. Позиция № 1-2. Деформационный (пластичный) разрыв прямого участка трубы. Металлографический анализ показал, что металл не соответствует требованиям ТУ из-за кратковременного перегрева. Отрезанный от коллекторов змеевик проверен прогонкой шара, который застрял в стыке поз. - а). Исследование стыка показало, что сварка стыка производилась при аварийном ремонте (дата) с нарушениями требований РТМ-1с-93 с - корневой слой стыка вместо аргоно-дуговой сварки неплавящимся электродом был выполнен электродуговой сваркой покрытыми электродами, что привело к наличию провисов и наплывов, перекрывших сечение и приведших к перегреву металла.

Мероприятия по предотвращению повреждений

1. Установить порядок строгого соблюдения при ремонте поверхностей нагрева параграфа 6.1 РТМ-1с-93 , который требует корневой слой сварного шва труб поверхностей нагрева выполнять только аргоно-дуговой сваркой неплавящимся электродом. К ремонту поверхностей нагрева допускать только обученных этому виду сварки и прошедших аттестацию сварщиков. Обязать сварщиков производить осмотр корневого слоя перед полной проваркой стыка. Лаборатории металлов и котлотурбинному (котельному) цеху при всех ремонтах осуществлять выборочный контроль.

Рис. 2. Формуляр повреждений ШПП. котлоагрегатов тепловых электростанций котел № 2, нитка - А

2. Дата. Позиция № 2-6. Свищ в угловом стыке в месте приварки змеевика к коллектору. Визуальный осмотр показал низкое качество сварки (наплывы, непровары, подрезы), выполненной при ремонте (дата). Проверка сварочной документации показала, что работа выполнялась сварщиком, не имеющим допуска к этому виду работ. При контроле не были обнаружены явно видимые дефекты сварки.

2. Произвести по ремонтной сварочной документации выявление всех стыков, выполненных этим сварщиком. Провести выборочный контроль качества других стыков, при неудовлетворительных результатах переварить все стыки. К сварочным работам на поверхностях нагрева допускать только аттестованных на этот вид работ сварщиков.

3. Дата. Позиция № 3-4. Разрыв на прямом участке трубы на расстоянии одного метра от потолка (в зоне максимального перегрева) выходной части змеевика. Отрезанный от коллектора змеевик проверен прогонкой шара, который застрял в гибе поз. - б). Внутренний осмотр показал наличие на выпуклой образующей внутренней стенки гиба наплывов металла и сварочного грата. Анализ ремонтной документации показал, что в предыдущий плановый ремонт на этом змеевике производилась вырезка образца для металлографического исследования. Вырезка образца производилась с нарушением технологии - вместо механического способа использовалась огневая резка, что и привело к частичному перекрытию сечения трубы и последующему ее перегреву.

3. Провести инструктаж и обучение сварщиков, выполняющих работы на поверхностях нагрева котлоагрегатов, порядку вырезки дефектных труб или их участков только средствами механической резки. Огневая резка может допускаться в виде исключения только в тесных и неудобных местах, а также в тех случаях, когда расположенные ниже участки трубы или змеевика удаляются. По ремонтной документации и опросом участников работ выявить все места, где работа производилась с подобными нарушениями. Произвести магнитный контроль этих труб с целью выявления наличия перегрева. При обнаружении труб «риска» их заменить.

4. Дата. Позиция № 4-2. Деформационный (пластичный) разрыв на прямом участке трубы выходной части змеевика на расстоянии одного метра от потолка. При выяснении причины разрыва выявлена продольная трещина (свищ) в месте приварки "сухаря" поз. - в), что из-за сокращения расхода пара в змеевике после зоны свища привело к перегреву и повреждению металла выходного участка в зоне максимальных температур.

4. Учитывая, что появление трещин в местах приварки "сухарей" на ширмах этого котла участились, а металл змеевиков соответствует требованиям длительной прочности, целесообразно в ближайший плановый ремонт произвести замену участков труб в местах жесткого крепления "сухарями". С целью повышения надежности узла рассмотреть целесообразность его реконструкции.

5. Дата. Позиция № 5-3. Продольная трещина на гибе в зоне максимального тепловосприятия стенки трубы. Визуальный осмотр и металлографический анализ металла показали признаки высокотемпературной газовой коррозии. Осмотр соседних ширм показал наличие газовой коррозии и на них, что является характерным признаком неудовлетворительного топочного режима в условиях недостаточной оснащенности автоматизированным температурным контролем.

5. С целью снижения влияния высокотемпературной газовой коррозии на лобовые участки ширм провести анализ состояния топочного режима при переходных и стационарных режимах, усилить контроль за соблюдением персоналом требований режимных карт. Систематически (ежесуточно) контролировать по диаграммам фактические температуры металла. Дооснастить термоконтроль ширм.


ПРИЛОЖЕНИЕ 3

ПРОГРАММА ПРОФИЛАКТИЧЕСКОГО ТЕХНИЧЕСКОГО ОБСЛУЖИВАНИЯ ПОВЕРХНОСТЕЙ НАГРЕВА КОТЛОВ ТЭС

АЛГОРИТМ ОРГАНИЗАЦИИ ПРОФИЛАКТИЧЕСКОГО ТЕХНИЧЕСКОГО ОБСЛУЖИВАНИЯ ПОВЕРХНОСТЕЙНАГРЕВА КОТЛОВ

СТАТИСТИКО-АНАЛИТИЧЕСКИЙ ПРОЦЕСС

Учет и нанесение на формуляры мест повреждений и зон «риска»

ФАКТОРНЫЙ АНАЛИЗ, ИДЕНТИФИКАЦИЯ ПОВРЕЖДЕНИЙ МЕТАЛЛА ТРУБ

Анализ повреждений металла и определение вызвавших их причин

ТАКТИЧЕСКОЕ НАПРАВЛЕНИЕ ОБЕС ПЕЧЕНИЯ ТЕКУЩЕЙ НАДЕЖНОСТИ (НЕМЕДЛЕННОЙ)

СТРАТЕГИЧЕСКОЕ НАПРАВЛЕНИЕ ОБЕСПЕЧЕНИЯ ДЛИТЕЛЬНОЙ НАДЕЖНОСТИ (ПЕРСПЕКТИВНОЙ)

Составление ведомостей объема работ на ожидаемый аварийный, неплановый останов или на плановый останов-Т2 котла или энергоблока с учетом прогнозирования предполагаемых повреждений на основе статистико-аналитического подхода

Контроль за эксплуатационными наруше ниями, разработка и принятие мер по их предотвращению. Совершенствование ор ганизации эксплуатации

Организация подготовительных работ и входной контроль основных и сварочных материалов

Регулярное (через полгода) выполнение требований программы «Экспертной системы контроля и оценки условий эксплуатации котлов»

Ожидание аварийного (непланового) оста нова или планового останова котла (энергоблока) на Т2

Разработка и утверждение мероприятий по направлениям «Экспертной системы…», которые оценены ниже 0,8. Организация их выполнения

Останов котла (энергоблока) При останове из-за обнаружения повреждения на поверхности нагрева или, если повреждение было выявлено после останова, организуется работа комиссии по расследованию причины

Формирование и привитие единой идеологии необходимости снижения общего числа остановов котлов (энергоблоков) с целью исключения факторов «риска» для металла в переходных режимах

Организация и проведение намеченных работ по восстановительному ремонту, превентивной замене участков поверхностей нагрева, профилактической диагностике и дефектации визуальными и инструментальными методами

Формирование концепции «щадящей» эксплуатации котлов (энергоблоков):

Исключение из регламента пусков практики «подхватов»,

Сведение к минимуму числа гидравлических опрессовок пароводяного тракта,

Исключение из практики форсированных

Контроль за проведением работ, приемка поверхностей нагрева после выполнения работ. Оформление ремонтной документации и результатов диагностики металла в зонах «риска». Подготовка ведомости объема превентивной заменыи дефектации на следующий останов котла

(с целью ускорения допуска) расхолаживаний тракта котла водой,

Полная автоматизация ведения температурного режима,

Внедрение химико-технологического мониторинга

Выявление и устранение факторов, напрямую и косвенно влияющих на снижение текущей надежности поверхностей нагрева

Уточнение программы предстоящих в перспективе замен поверхностей нагрева с учетом определения возможного ресурса металла инструментальными методами технической диагностики и физико-химического анализа образцов

ПРИЛОЖЕНИЕ 4

1. Приказ РАО «ЕЭС России» от 14.01.97 № 11 «О некоторых итогах работы по повышению надежности котлов Рязанской ГРЭС».

2. ТУ 34-38-20230-94. Котлы паровые стационарные. Общие технические условия на капитальный ремонт.

3. ТУ 34-38-20220-94. Экраны гладкотрубные паровых стационарных котлов с естественной циркуляцией. Технические условия на капитальный ремонт.

4. ТУ 34-38-20221-94. Экраны гладкотрубные прямоточных паровых стационарных котлов. Технические условия на капитальный ремонт.

5. ТУ 34-38-20222-94. Пароперегреватели паровых стационарных котлов. Технические условия на капитальный ремонт.

6. ТУ 34-38-20223-94. Пароперегреватели промежуточные паровых стационарных котлов. Технические условия на капитальный ремонт.

7. ТУ 34-38-20219-94. Экономайзеры гладкотрубные стационарных паровых котлов. Технические условия на капитальный ремонт.

8. ТУ 34-38-20218-94. Экономайзеры мембранные стационарных паровых котлов. Технические условия на капитальный ремонт.

9. РД 34.30.507-92 . Методические указания по предотвращению коррозионных повреждений дисков и лопаточного аппарата паровых турбин в зоне фазового перехода. М.: ВТИ им. Ф.Э. Дзержинского, 1993.

10. РД 34.37.306-87. Методические указания по контролю состояния основного оборудования тепловых электрических станций; определению качества и химического состава отложений. М.: ВТИ им. Ф.Э. Дзержинского, 1993

11. Шицман М.Е., Мидлер Л.С., Тищенко Н.Д. Окалинообразование на нержавеющей стали в перегретом паре. Теплоэнергетика № 8. 1982.

12. Груздев Н.И., Деева З.В., Школьникова Б.Э., Сайчук Л.Е., Иванов Е.В., Мисюк А.В. О возможности развития хрупких разрушений поверхностей нагрева котла при нейтрально-окислительном режиме. Теплоэнергетика № 7. 1983.

13. Земзин В.Н., Шрон Р.З. Пути повышения эксплуатационной надежности и увеличения ресурса сварных соединений теплоэнергетического оборудования. Теплоэнергетика № 7. 1988.

14. Базар Р.Е., Малыгина А.А., Гецфрид Э.И Предупреждение повреждений сварных соединений труб ширмовых пароперегревателей. Теплоэнергетика № 7. 1988.

15. Чекмарев Б.А. Переносной автомат для сварки корня шва труб поверхностей нагрева. Энергетик № 10. 1988.

16. Сысоев И.Е. Подготовка котлов к ремонту. Энергетик № 8. 1989.

17. Кострикин Ю.М., Вайман А.Б., Данкина М.И., Крылова Е.П. Расчетные и экспериментальные характеристики фосфатного режима. Электрические станции № 10. 1991.

18. Сутоцкий Г.П., Верич В.Ф., Межевич Н.Е. О причинах повреждения экранных труб солевых отсеков котлов БКЗ-420-140 ПТ-2. Электрические станции № 11. 1991.

19. Гофман Ю.М. Диагностика работоспособности поверхностей нагрева. Электрические станции № 5. 1992.

20. Наумов В.П., Ременский М.А., Смирнов А.Н. Влияние дефектов сварки на эксплуатационную надежность котлов. Энергетик № 6. 1992.

21. Белов С.Ю., Чернов В.В. Температура металла ширм котла БКЗ-500-140-1 в начальный период эксплуатации. Энергетик № 8. 1992.

22. Ходырев Б.Н., Панченко В.В., Калашников А.И., Ямгуров Ф.Ф., Новоселова И.В., Фатхиева Р.Т Поведение органических веществ на разных стадиях водоподготовки. Энергетик № 3. 1993.

23. Белоусов Н.П., Булавко А.Ю., Старцев В.И. Пути совершенствования водно-химических режимов барабанных котлов. Энергетик № 4. 1993.

24. Воронов В.Н., Назаренко П.Н., Шмелев А.Г. Моделирование динамики развития нарушений водно-химического режима. Теплоэнергетика № 11. 1993.

25. Холщев В.В. Теплохимические проблемы эксплуатации топочных экранов барабанного котла высокого давления. Электрические станции № 4. 1994.

26. Богачев А.Ф. Особенности коррозии аустенитных труб пароперегревателей. Теплоэнергетика № 1. 1995.

27. Богачев В.А., Злепко В.Ф. Применение магнитного метода контроля металла труб поверхностей нагрева паровых котлов. Теплоэнергетика № 4. 1995.

28. Манькина Н.Н., Паули В.К., Журавлев Л.С. Обобщение промышленного опыта внедрения пароводокислородной очистки и пассивации. Теплоэнергетика, № 10. 1996

29. Паули В.К. К оценке надежности энергетического оборудования. Теплоэнергетика № 12. 1996.

30. Паули В.К. Некоторые проблемы организации нейтрально-кислородного водного режима. Электрические станции № 12. 1996.

31. Штромберг Ю.Ю. Контроль металла на тепловых электростанциях. Теплоэнергетика № 12. 1996.

32. Дубов А.А. Диагностика котельных труб с использованием магнитной памяти металла. М.: Энергоатомиздат, 1995.



Поверхности нагрева являются основной частью любого котла как по своему весу, так и по доле трудоемкости при изготовлении его на заводе.

Под поверхностями нагрева здесь понимаются трубные элементы, работающие под давлением и образующие поверхности нагрева пароперегревателя, водяного экономайзера, топочных экранов, а также водо- и пароперепускные трубы.

Применяемые материалы

Змеевики пароперегревателя и водяного экономайзера, как правило, изготавливаются из труб диаметром 25-38 мм, трубы экранов обычно имеют диаметр 60 мм, а водо- и пароперепускные трубы – диаметр 108-133 мм.

Марка применяемой стали и толщина стенки трубы зависят от тех параметров, при которых работает данная труба. Для труб экрана и змеевиков водяного экономайзера, а также водоопускных труб в подавляющем большинстве случаев применяют сталь 20, для изготовления змеевиков пароперегревателя и пароперепускных труб служат стали марок: 20, 12ХМФ, 12Х1МФ, 15ХМ, 12Х2МФСР, Х18Н9Т, Х18Н12Т и им подобные.

Трубы диаметром от 57 до 133 мм изготовляются горячекатаными. Трубы диаметром от 10 до 108 мм холоднотянутыми, холоднокатаными и теплокатаными. Горячекатаные трубы поставляются длиной не более 12 м, холоднокатаные и теплокатаные трубы могут быть длиной до 18 м.

Трубы внутри и снаружи защищается от коррозии на время транспортировки и хранения в течение 6 месяцев. Защитное покрытие не должно содержать масел.

Если контроль труб физическими методами выполнен в достаточном объеме, то гидравлическое испытание на заводе-изготовителе можно не производить, но и в этом случае завод гарантирует, что трубы выдержат необходимое давление.

Трубы поставляются партиями. Под партией труб понимаются трубы одной марки стали, одной плавки, одного размера, прошедшие термическую обработку в одинаковых условиях. Количество труб в одной партии – не более 200 штук. На каждом конце трубы диаметром 25 мм и более, толщиной стенки не менее 3 мм на расстоянии 200-300 мм от конца клеймом наносится маркировка: марка стали и номер партии. Концы труб диаметром до 133 мм плотно закрываются пластмассовыми колпачками.

Трубы поступают на котлостроительный завод в железнодорожных вагонах без специальной упаковки, кроме труб аустенитного класса, которые упаковываются в деревянные ящики.

Подготовка труб к производству

К надежности работы поверхностей нагрева предъявляются очень жесткие требования, так как любой случай нарушения их нормальной работы ведет к останову котла, что связано с большими материальными потерями, особенно на котлах большой мощности. Поэтому к качеству металла труб следует относиться очень требовательно. К сожалению, нередки случаи, когда на котлостроительных заводах или, что еще хуже в процессе эксплуатации выявляются дефекты труб металлургического характера. В связи с этим на всех крупных котельных заводах имеются цехи входного контроля труб перед запуском их в производство.

Входной контроль начинается с внешнего осмотра труб снаружи и изнутри. Трубы визуально контролируются по наружной поверхности с целью обнаружения глубоких рисок, вмятин, трещин, закатов, расслоения и тому подобного. Осмотру подвергается каждая труба по всей поверхности, изнутри трубы диаметром более 70мм осматриваются перископом.

Затем применяются неразрушающие методы контроля, такие как УЗД и магнитная дефектоскопия. Эти методы позволяют обнаружить как внутренние, так и поверхностные дефекты металла труб. Обязательной операцией входного контроля труб является — проверка марки стали труб. Для этого проводят стилоскопирование.

К операциям подготовки труб следует также отнести такие операции, как очистка труб от ржавчины и сортировка.

Достаточно часто на котельные заводы поступают трубы, имеющие значительную коррозию снаружи и изнутри. Для нормального хода дальнейшего производства трубы необходимо очистить от ржавчины. Коррозия снаружи и изнутри может быть удалена химическим путем (промывка кислотой). Однако такой способ удаления ржавчины требует организации сложного травильного хозяйства с кислотными и щелочными ваннами, промывкой труб и т.д., поэтому на котельных заводах этот метод не нашел своего применения.

Наружная ржавчина удаляется с труб на специальных станках, представляющих собой пару круглых вращающихся металлических щеток и рольганг для подачи труб. Снятая ржавчина отсасывается в приемник пыли. Иногда такой станок дополнительно оборудуется газопламенной горелкой, которая устанавливается до щеток. При нагреве трубы часть ржавчины отлетает, т.к. чистый металл и ржавчина имеют разные коэффициенты линейного расширения. Окончательная очистка трубы осуществляется металлическими щетками.

Наружная окалина хорошо может быть удалена пескоструйной обработкой труб, поэтому этот метод очистки труб от ржавчины находит все большее применение в различных установках.

Имеются установки, производящие очистку наружной поверхности труб с помощью иглофрез. Впервые такая установка появилась на ЗИО, далее на БиКЗ, БКЗ и других.
Труднее удалить внутреннюю ржавчину из труб. Для этой цели на некоторых заводах применяют ворошители. При ворошении часть ржавчины внутри трубы опадает, и она удаляется путем продувки труб сжатым воздухом. Пыль улавливается в приемник пыли. Конечно, этот метод далеко не совершенен, но он без помех позволяет вести изготовление трубных элементов. Следует иметь ввиду, что перед эксплуатацией трубные поверхности проходят на электростанции кислотную промывку для очистки внутренних полостей поверхностей нагрева котла.

Если трубы после очистки от ржавчины по каким-либо причинам не могут быть запущены в производство, то необходимо произвести пассивацию очищенных поверхностей для предотвращения коррозии.

В последнее время часть труб с трубопрокатных заводов поступает с защитной консервацией. Для возможности выполнения последующих технологических операций требуется удалить эту консервацию. В зависимости от состава защитной смазки она удаляется или теплой водой, или уайт-спиритом, если в ее составе присутствуют масла. Такая промывка труб производится вручную. Удаление консервации может быть осуществлено путем обжига труб в печи или газовыми горелками.

Следующей операцией подготовки труб является сортировка труб по длине, диаметру и толщине стенки. Для рационального раскроя труб необходима их сортировка по длине, так как при поставке труб всегда имеется определенный процент немерных труб. Около 5% труб в партии отличаются по длине на 150-200 мм. Это дает возможность экономичного подбора труб согласно данным раскроя, так как отходы при резке в размер оказываются минимальными.

На котлостроительных заводах сортировку труб осуществляют на механизированных линиях, на которых сортировка по длинам осуществляется автоматически.

Внутри каждой партии целесообразна сортировка труб по фактическим толщинам стенок. Затраты на эту трудоемкую операцию окупаются повышением качества сварного соединения. Простейший способ сортировки такого рода основан на замерах труб контрольными калибрами.

После проведения всех подготовительных операций технолог цеха делает раскрой змеевика или трубы, т.е. определяет расположение сварных стыков на детали и в соответствии с этим количество и конфигурацию отдельных деталей, из которых в дальнейшем будет сварен змеевик или труба.

При составлении раскроя должны учитываться следующие требования:
1. Число сварных стыков должно быть наименьшим, а длина стыкуемых труб по возможности наибольшей. Поэтому желательно получить с трубопрокатных заводов трубы большей длины.
2. Запрещается располагать сварные стыки на гибах труб и в местах приварки к ним каких-либо деталей.
3. Сварные стыки должны быть доступны для ремонта на электростанциях.
4. От начала гиба до стыка должен быть прямой участок не менее 250 мм при контактной сварке и не менее 50 мм (но не менее диаметра трубы) при ручной сварке.
5. Раскрой должен обеспечить минимальные отходы труб.
6. При разработке процесса раскроя следует стремиться к возможно большему количеству одинаковых деталей (см. рис.).

Котельные заводы определяют одно или несколько значений длин труб, которые удовлетворяют перечисленным выше требованиям, и заказывают мерные трубы именно таких длин.

Технолог при определении длины заготовки детали должен иметь ввиду, что трубы при гибке удлиняются.

Развертка сложно-изогнутой трубы (змеевика) (см. рис.) подсчитывается по длине нейтральной линии, т.е. по оси трубы. Эта длина для змеевика на рис. Состоит из длин трех прямых участков l 1 +l 2 +l 3 , трех изогнутых на 180° участков и одного неполного, изогнутого на угол α участка. Длина развертки изогнутого участка равна S=(2πrα)/360, (при α=180°, S=πr). Определение развертки входит составной частью в операцию, называемую раскроем труб.

Раскрой производят следующим образом. На миллиметровой бумаге вычерчивают в виде прямой линии всю длину трубного элемента и отмечают на этой схеме положение сварных стыков, границ гибов и приварки деталей. Согласно полученной схеме раскроя определяют соответствующие длины труб и нумеруют заготовки порядковыми номерами. Длину труб назначают с учетом припуска под контактную сварку, т.е. учитывают, что в процессе оплавления труба укоротится. Длины трубных заготовок, подлежащих гибке, назначают с учетом вытяжки, тем самым учитывают, что заготовка в процессе операции гибки удлинится.

Таким образом, длина трубной заготовки отличается от длины трубы в составе трубного элемента на величину допуска под контактную сварку и на величину вытяжки при гибке. Длину трубной заготовки L з, мм, определяют по следующей формуле:
L з = L р + δ к + δ в, где L р развернутая длина по чертежу, δ к – припуск под контактную сварку; δ в – величина вытяжки.

За последние годы технология гибки труб усовершенствована настолько, что стало возможным производить их гибку без последующей обрезки концов трубы. Это позволило отказаться от операции резки гнутых труб и перейти на резку только прямых заготовок труб под гибку или контактную сварку.

Существует большое количество труборезных станков.

Оборудование для резки труб можно разделить на две большие группы:
1. Станки, при резке на которых обрезаемая труба вращается, а инструмент не имеет вращательного движения.
2. Станки, на которых труба при резке не вращается, а инструмент имеет вращательное движение с радиальной подачей.

Оборудование первой группы отличается шумом вращающейся трубы, быстрым износом при резке длинных труб даже с небольшой погнутостью, биением кривой трубы при вращении и связанной с этим опасностью для рабочего и окружающих.

Поэтому, безусловно, предпочтительнее оборудование, на котором труба при резке не вращается. Трудозатраты для второй группы станков на 3-5% меньше.

Обрезанные заготовки поступают на зачистку концов под контактную сварку в целях получения контактной поверхности, свободной от оксидов, механических и жировых загрязнений, обеспечивающей хороший электрический контакт трубы с губками сварочной машины. Длина зачистки зависит от конструкции губок контактно-сварочной машины и обычно составляет 200-250 мм.

Операция зачистки концов труб может быть выполнена несколькими способами:
1. Пескоструйной очисткой.
2. Зачисткой абразивными камнями.
3. Зачисткой иглофрезами.
4. Зачисткой непрерывной наждачной лентой.
5. Химической зачисткой.

В связи с появлением совершенных контактно-сварочных машин, оборудованных приборами для контроля качества сварки, требования к зачистке концов труб под сварку возросли: кроме зачистки снаружи на длине 250 мм, требуются зачистка внутренней поверхности трубы на длине 15-20 мм, а также зачистка торца трубы. Зачистка внутренней поверхности часто заменяется операцией зенкерования трубы.

Способы изготовления змеевиков и труб поверхностей нагрева

В котлостроении известно несколько различных способов изготовления элементов поверхностей нагрева.

Способ 1. Этот способ был преобладающим в 50-е годы. Предусматривалась резка заготовок труб, гибка всех деталей, зачистка их под сварку, сварка деталей в змеевик или трубу, плазировка, гидравлическое испытание и отделочные операции.

Гибка деталей была одной из первых операций, и все последующие операции (зачистка под сварку, сварка) производились на гнутых деталях.

Плаз представляет собой большую стальную или чугунную плиту, собранную из нескольких прямоугольных частей, соединенных на болтах. При изготовлении серии однотипных змеевиков применяют плазы, на которых вычерченный контур змеевика ограничивается по гибам и в средней части прямых участков вставленными в плаз гладкими штырями и для контроля контура целого змеевика после стыковой сварки.

Способ 2. Повышение параметров пара и применение в связи с этим высоколегированных труб для изготовления пароперегревателей вызвали необходимость разработки другого способа изготовления змеевиков, который первоначально использовался только при изготовлении змеевиков из нержавеющих сталей и стали 12Х2МФСР. При изготовлении змеевиков из этих сталей предыдущим способом, т.е. посредством контактной сварки заранее согнутых элементов, не удавалось удалить внутренний грат после сварки.

Поэтому начали сваривать между собой прямые заготовки в одну длинную плеть, и уже потом изгибать из нее змеевик, что позволило применить пневматический дорн с возвратно-поступательным движением для удаления внутреннего грата после сварки.

При такой «плетьевой» технологии операции резки, зачистки и сварки выполняют на прямых трубах, что позволяет их механизировать и даже автоматизировать (это «+»), но усложняется процесс гибки, так как приходится манипулировать с целым змеевиком и невозможна гибка с дорном («-«).

Ввиду явных преимуществ «плетьевой» технологии ее стали применять при изготовлении не только змеевиков из высоколегированных сталей, но и любых змеевиков и труб. На основе этой технологии разработаны механизированные линии изготовления змеевиков.

Изготовление змеевиков с использованием «плетьевой» технологии потребовало создания новых, специальных трубогибочных станков, исключающих кантовку змеевика при его гибке, поскольку гибка на обычных трубогибочных станках сопровождается многочисленными переворотами змеевика в процессе гибки.

Способ 3. В попытке использовать преимущества обоих рассмотренных способов был разработан третий способ изготовления змеевиков, при котором внутренний грат после сварки удаляется пневмодорном, а на гибке применяются обычные трубогибочные станки с использованием дорна и без кантовок змеевика.

В этом случае изгибают первую деталь змеевика и сваривают с прямой заготовкой, следующей по раскрою детали. Внутренний грат удаляют со стороны прямой заготовки пневмодорном. После сварки обе детали поступают на трубогибочный станок, где их изгибают с пристыкованной заготовкой.

По окончании гибки и проверки качества гибов узел вновь поступает на контактно-сварочную машину, где к нему приваривают следующую прямую заготовку. Теперь на гибку подается узел из трех сваренных деталей и производится гибка приваренной прямой заготовки. Таким образом изготовляется весь змеевик.

Минусы. Недостатком этого способа являются частые перевозки змеевика в процессе изготовления и нерациональное использование гибочного и сварочного оборудования, которое простаивает во время перевозок и выполнения операций на соседнем рабочем месте. В связи с эти производительность труда при изготовлении змеевиков данным способом ниже, чем первых двух.

Изготовление водо-пароперепускных и других труб также можно вести двумя технологическими вариантами:
1. Гибка элементов трубы и последующая их сварка в целую трубу.
2. Сварка трубы заготовки в плеть и последующая ее гибка.

В первом варианте операция гибки не представляет сложностей, поскольку гибке, как правило подвергается труба длиной 6-9 м и можно использовать дорн. На операции сварки гнутых элементов трубы следует тщательно следить за правильностью разворота ее отдельных частей.

Во втором варианте проще операция сварки, так как свариваются прямые трубы, но сложнее операция гибки, поскольку исключена гибка с дорном и приходится кантовать трубу длиной 12-16 м.

Современному уровню технологии котлостроения отвечают следующие технологические маршруты изготовления трубных элементов поверхностей нагрева и водо-пароперепускных труб:

I. Технологический маршрут изготовления змеевиков и труб из согнутых элементов

1. Входной контроль труб. Проверка сертификатов, очистка труб по всей наружной поверхности, снятие колпачков, осмотр и обмер труб, УЗД, стилоскопирование.

2. Разметка и резка труб (при резке по упору разметка не производится).

3. Подготовка концов труб под контактную сварку. Зачистка внутренней поверхности трубы на 15-20 мм от торца трубы. Зачистка наружной поверхности трубы на 250-300 мм от торца, если не производилась очистка трубы по всей наружной поверхности. Эти операции могут быть выполнены и после гибки трубы.

4. Гибка труб и контроль согнутых элементов.

5. Контактная сварка элементов змеевика или трубы. Удаление внутреннего и наружного грата после сварки.

6. Плазировка змеевика или трубы.

7. Сборка и сварка приварных деталей. Стилоскопирование.

8. Гидравлическое испытание и прогонка контрольного шара.

9. Сборка змеевиков в пакеты.

10. Окраска, маркировка и упаковка пакетов змеевиков.

II. Технологический маршрут изготовления змеевиков и труб по «плетьевой» технологии

1. Входной контроль труб.
2. Разметка и резка труб.
3. Подготовка концов труб под контактную сварку.
4. Контактная сварка плети.
5. Гибка плети в змеевик.
6. Плазировка змеевика.
7. Сборка и сварка приварных деталей.
8. Гидравлическое испытание.
9. Сборка змеевиков в пакеты.
10. Окраска, маркировка и упаковка пакетов змеевиков.

Как видно из сравнения технологических маршрутов, большинство операций у них одинаковы. Разница состоит в операциях гибки и контактной
сварки. Кроме этого при «плетьевой» технологии отпадает операция контроля согнутых элементов змеевика или трубы, что сокращает трудозатраты на 5-8%.

III. Технологический маршрут изготовления водо- пароперепускных труб

1. Входной контроль труб.
2. Разметка и черновая резка труб (последняя выполняется газовой резкой или отрезными дисковыми пилами).
3. Чистовая обработка торцов труб.
4. Гибка труб.
5. Сборка и сварка приварных деталей.
6. Гидравлическое испытание труб.
7. Окраска, маркировка и упаковка труб.

Гибка труб

Гибка труб различных диаметров широко применяется в котлостроительной промышленности и наряду со сваркой является основной технологической операцией.

Ежегодно в отрасли производится несколько миллионов гибов.
Основное требование к гибке трубы заключается в сохранении неизменным проходного сечения в месте гиба.

Гибы труб при изготовлении котла очень разнообразны. Угол загиба трубы может достигать 360° (спиральный змеевик); между двумя соседними гибами может не быть прямого участка (гибка «из гиба в гиб»), причем такая гибка может выполняться как в одной плоскости, так и в разных плоскостях; прямые участки до и после гиба могут быть самой разной длины.

Что происходит с профилем трубы в процессе гибки?
При изгибе трубы в ее стенках возникают напряжения: снаружи растягивающие, внутри – сжимающие. Эти изменения вызывают:
— превращение круглого поперечного сечения трубы в овальное;
— уменьшение толщины стенки трубы на выпуклой стороне и увеличение на вогнутой;
— образование на вогнутой стороне складок (гофр).

Следует иметь ввиду, что пластическая деформация при гибке распространяется на зону изгиба трубы и на прилегающие к ней прямые участки длиной около полутора- двух диаметров трубы; поэтому здесь также нарушается поперечное сечение трубы.

Овальность трубы в месте гиба в основном зависит от радиуса гиба и отношения толщины стенки трубы к ее диаметру. Большая ось овала поперечного сечения согнутого участка трубы располагается в плоскости, перпендикулярной плоскости изгиба. Степень овальности а выражается в процентах: a=(D max -D min)/D н х 100% или
a=2(D max -D min)/(D max +D min) х100%

где D max – большая ось овала,
D min – малая ось овала,
D н – диаметр трубы (номинальный).

Овальность не должна превышать 10% для труб поверхностей нагрева диаметром до 76 мм и 8% для соединительных труб и трубопроводов.

Овальность трубы в месте гиба уменьшает площадь поперечного сечения.

Вероятность появления гофр, как и овальности, увеличивается с уменьшением радиуса гиба и отношения толщины стенки трубы к ее диаметру. Гофры повышают сопротивление движению среды и являются очагами засорения и коррозии трубы.

Исходя из изложенного, желательно производить гибку труб на возможно больший радиус, применяя толстостенные трубы, так как при этом проще всего обеспечить качество гиба.

При гибке относительно тонкостенных труб на радиус гиба 3D н и менее сечение трубы в месте гиба имеет недопустимый эллипс, а иногда, кроме этого, на внутренней стороне гиба появляются гофры. Для предотвращения подобных явлений гибка таких труб производится на специальной оправке, вставляемой на тяге внутрь трубы. Такая оправка называется дорном. Регулировкой дорна достигается нужное качество гиба.

Дорн представляет собой стержень с гибкими дисками, который находится внутри трубы. Гибка с дорном обеспечивает малый радиус гиба, гладкий ровный изгиб, минимальную овальность трубы в месте гиба.

Гибка труб может быть подразделена на станочную и ручную.
Ручная гибка ввиду низкой производительности в котлостроении практически не применяется.

Гибка на станках может быть вхолодную и вгорячую. «Горячая» гибка имеет меньшую производительности по сравнению с «холодной». При изготовлении станционных трубопроводов из труб большого диаметра с большой толщиной стенки, изгибаемых на малые радиусы применяется технология гибки труб с нагревом токами высокой частоты (ТВЧ).

Наибольшее распространение в котлостроении получила гибка труб вхолодную на станках. Этим способом гнут трубы диаметром до 219 мм, причем гибка может выполняться методами: наматывания и обкатки.

Рассмотрим гибку труб методом наматывания на сектор.


Цикл гибки труб на станке состоит из пяти основных приемов.

1-й прием заключается в подготовке рабочих органов станка к загрузке трубой.

Суппорты 1 и 2 вместе с упорами 11 и 4 и сменными вкладышами 5 и 10 отодвинуты от гибочного сектора 8. Сектор скреплен с поворотным столом 9 и располагается на общей с ним оси О-О.

Вкладыши, сменяемые в зависимости от диаметра труб, соединены с упорами 11 и 4 ласточкиным хвостом. Прижимной вкладыш 5 имеет гладкую поверхность желоба, по которому скользит труба. Зажимной вкладыш 10 имеет насечку на поверхности желоба для предупреждения выскальзывания трубы из зажима. Стержень 6 с дорном 7 отодвинуты вправо. Вторым концом стержень шарнирно соединен со штоком гидравлического цилиндра.

2-й прием заключается в загрузке станка трубой.
На стержне 6, после подачи стержня влево, в нужном месте устанавливается и закрепляется болтом фиксатор 13. Со стороны, указанной стрелкой, на дорн надевается труба 12, которая считается установленной, как только она достигает фиксатора.

3-й прием заключается в установке рабочих органов станка в положение, соответствующее началу гибки трубы. Свободный конец трубы зажимается между сектором 8 и зажимным вкладышем 10. Вкладыш 5 прижимает трубу к сектору, создавая направление и поддерживая трубу при гибке. Зажим конца трубы и прижим трубы к сектору осуществляются путем перемещения суппортов 1 и 2 в направлении сектора 8 под действием гидравлического давления.

4-й прием заключается в выполнении гибки трубы, т.е. в рабочем ходе станка.

В процессе рабочего хода станка труба 12 зажата между гибочным сектором 8 и суппортом 1 с зажимным вкладышем 10. Дорн находится при этом в зоне гиба. Стол 9 поворачивается вместе с гибочным сектором вокруг оси О-О с помощью гидравлического привода.

Труба 12, опираясь на неподвижный прижимной вкладыш 5 и скользя по нему, изгибается по форме гибочного сектора 8. Процесс изгибания трубы продолжается до тех пор, пока поворотный стол 9 с трубой 12 не повернется вокруг оси О-О на заданный угол и привод его автоматически выключится.

После отключения привода поворота стола и остановки станка рабочий с помощью гидравлического привода, связанного со стержнем, вытягивает дорн из зоны гиба трубы. Затем отодвигается прижимной суппорт 2 и труба снимается со станка.
5-й прием, завершающий цикл гибки трубы, заключается в возврате с помощью гидропривода поворотного стола 9 и гибочного сектора 8 в исходное положение.
На этом заканчивается цикл одного гиба трубы.


В последнее время все чаще внимание технологов привлекают трубогибочные станки с использованием метода обкатки, при котором гибочный сектор 2 в процессе гибки остается неподвижным, труба 8 крепится в зажиме 1 и также становится неподвижной. Участок трубы, который должен быть согнут, подвергается воздействию двух роликов: первый из них (по ходу гибки) 4 является изгибающим, второй 3 – калибрующим. Оба ролика заключены в единую обойму 5 и свободно вращаются на своих осях. Обойма с роликами прижимается к изгибаемой трубе и ей сообщается вращательное движение вокруг гибочного сектора. Гибочный сектор в различных конструкциях станков может быть установлен горизонтально либо вертикально. Применение дорна при гибке обкаткой выигрыша не дает, так как труба относительно дорна неподвижна и он не калибрует трубу в процессе гибки. Для уменьшения овальности трубы в данном случае служит калибрующий ролик, который движется по гибу трубы вслед за изгибающим роликом.

Таким образом, при гибке обкаткой возможна только бездорновая гибка, что ограничивает ее применение при гибке труб на малые радиусы гиба. Кроме этого, при гибке обкаткой на трубе до начала гиба должен быть оставлен достаточно большой прямой участок, иначе конец трубы не захватится изгибающим роликом. При гибке обкаткой невозможна гибка «из гиба в гиб», без прямого участка между соседними гибами. В этом отношении гибка труб методом наматывания более универсальна.


Этот способ гибки является одним из наиболее совершенных способов.

На трубе, подаваемой направляющими роликами 1, с помощью кольцевого индуктора 2 ТВЧ (токов высокой частоты) нагревают узкий участок трубы и изгибают его с помощью нажимного гибочного ролика 4. При этом нагретый участок пластически деформи-руется, в то время как близлежащие холодные зоны с относительно низкой пластичностью препятствуют образованию овальности. Для поддержания минимальной ширины нагретой зоны, труба на выходе индуктора интенсивно охлаждается водой кольцевым спрейером 3. Процесс гибки складывается из нескольких стадий: продвижение трубы под нажимной ролик; подвод нажимного ролика к трубе (начало гибки); взаимное перемещение трубы и нажимного ролика (труба перемещается в продольном направлении, а нажимной ролик – в поперечном) и гибка при неподвижном ролике и при перемещении только трубы.

При достижении заданного угла гиба механизм подачи останавливается, и процесс гибки прекращается. Радиус гиба зависит от конечного положения нажимного ролика и задается соответствующей настройкой оборудования. Угол гиба зависит от величины продвижения трубы.

Процесс гибки с нагревом ТВЧ эффективен при изготовлении трубных элементов с различными радиусами гиба и в различных плоскостях и находит применение в единичном и мелкосерийном производстве. Способ характерен меньшим утонением стенки и меньшей овальностью трубы, чем при других способах гибки.

Гибка труб на трубогибочных станках любой конструкции выполняется с помощью гибочной оснастки: гибочного шаблона (гибочной головки), прижимного устройства, направляющего корыта или роликов, изгибающего и калибрующего роликов, а также дорна. Гибочный шаблон, прижим, ролики, корыто имеют профилированный желоб, равный диаметру изгибаемой трубы.

Гибка может производиться по разметке или по упору, устанавливаемому на станине станка. В случае гибки по разметке на трубе мелом наносят риски, соответствующие местам гиба и прямых участков. При разметке длина изгибаемого участка корректируется с учетом вытяжки труб при гибке. Гибка по упору предпочтительнее, так как отпадает операция разметки труб и связанные с ней ошибки; кроме того, повышается производительность труда.

При проектировании трубного изогнутого элемента утонение трубы в гибе учитывают выбором большей, чем расчетная, толщины стенки трубы (определяется нормами расчета на прочность). В чертеже обычно указывают угол и радиус гиба.

Сварка труб

Основным видом сварки при изготовлении змеевиков водяного экономайзера, пароперегревателя и труб экрана является контактная сварка на специальных контактно-сварочных машинах.

Метод контактной сварки наиболее производителен в условиях массового производства однотипных деталей.

Особенность контактной сварки – отсутствие контроля качества сварных соединений существующими в настоящее время неразрушающими методами контроля.

Поэтому основным средством обеспечения высокого качества сварки является оснащение сварочных машин регистрирующими устройствам, контролирующими параметры сварки каждого стыка и обеспечивающими постоянство сварочных параметров. В целях контроля качества сварки предусматривается систематическое испытание экспресс-образцов.

Контактная сварка стыков освоена для всех марок котельных сталей. Из других видов сварки применяется полуавтоматическая многослойная сварка под слоем флюса для сварки водо-пароперепускных труб диаметром 133 мм, и ручную сварку, с помощью которой привариваются различные мелкие детали на змеевиках и трубах, развилки экранов. Иногда ручной сваркой выполняются стыки опускных и пароперепускных труб. Особым видом сварки является приварка шипов на экранных трубах.

Контактная сварка является одним из способов сварки давлением. Осуществляется она с местным нагревом и сжатием благодаря выделению теплоты, возникшей в месте повышенного сопротивления при прохождении электрического тока через цепь, в которую включены свариваемые детали. контакт между этими деталями создается в том месте, где они должны быть сварены между собой. Сопротивление контакта прохождению тока значительно больше, чем сопротивление сплошного металла. Это обстоятельство влечет за собой усиленное местное выделение теплоты на участке соприкосновения деталей, что как раз и необходимо для сварки, металл в зоне сварки нагревается до пластического состояния, и концы труб сжимаются под действием давления, прикладываемого на свариваемом участке.

Различают два вида стыков контактной сварки: сварку сопротивлением и сварку оплавлением.

При сварке сопротивлением детали вначале сжимают, а затем к ним подводят электрический ток и соединяемые концы труб нагревают до пластического состояния, после чего ток выключают и одновременно с этим производят осадку (в настоящее время этот вид сварки не применяется ввиду возможного брака стыков).

Широко применяется стыковая сварка непрерывным оплавлением. В этом случае ток включают до соприкосновения труб. При очень слабом давлении вначале медленно, а затем быстрее трубы сближают. В момент их соприкосновения на свариваемых поверхностях в точках касания возникает интенсивное искрение, металл на торцах труб оплавляется. После этого трубы подвергают осадке.

Осадка разогретых концов свариваемых труб необходима для удаления из плоскости контакта разогретого наружного слоя уже окисленного воздухом металла и его окалины. При осадке в соприкосновение вступают глубинные разогретые, но неокисленные слои металла, поскольку к ним не было доступа воздуха. Окисленный металл выдавливается вовнутрь и наружу стыка, образуя грат. Осадка необходима также для того, чтобы вступили в действие силы молекулярного сцепления свариваемых концов труб. При выполнении этих условий обеспечивается надежное соединение труб.

В связи с отсутствием неразрушающих методов контроля сварных швов, выполненных контактной сваркой, требуется оснащение контактно-сварочных машин приборами автоматического контроля основных параметров процесса сварки.

Перед началом сварки сварщик устанавливает в зажимы машины медные губки, соответствующие диаметру свариваемых труб, затем проверяет центровку зажимов. Эту операцию он выполняет с помощью контрольных валиков, которые зажимают в губки машины.

Сварка начинается с укладки одной из свариваемых труб и зажатия ее в губках машины. Трубу укладывают в губки так, чтобы вылет ее конца из губок составлял половину расстояния между зажимами. В другой зажим помещают вторую свариваемую трубу так, чтобы ее торец соприкасался с торцом первой трубы. На одну из свариваемых деталей одевают наконечник, подводящий кислородно-воздушную смесь при кислородной продувке для удаления внутреннего грата, или наконечник воздушного шланга, с помощью которого прогоняют шар или снаряд для удаления внутреннего грата. При сварке прямых труб в этот конец для удаления внутреннего грата заводят пневматический дорн. На свободный конец другой свариваемой детали устанавливают ловушку для искр или шароуловитель.

Внутренний грат в трубах может быть удален несколькими способами. Наиболее употребительными являются способы удаление внутреннего грата:
. пневматическим дорном;
. шаром;
. снарядом;
. воздушно-кислородной смесью.

В процессе контактной сварки внутренняя поверхность трубы в месте сварного стыка загрязняется брызгами металла, которые не поддаются удалению ни одним из способов удаления внутреннего грата. Для уменьшения образования этих брызг перед сваркой в концы труб укладывают картонные кольца, которые защищают внутреннюю поверхность труб. Ширина кольца примерно 20-30 мм. После сварки кольцо удаляется из трубы в процессе удаления внутреннего грата.
Удаление грата кислородно-воздушной смесью основано на свойстве стали гореть в среде кислорода. При сварке труб из высоколегированных сталей внутренний грат кислородом не удаляется, так как он не горит в кислороде.

Время продувки составляет 1-1,5 с. Причем смесь подают через 0,2-0,3 с после осадки. При большем интервале времени температура грата может стать ниже температуры воспламенения стали и грат не будет удален.

После продувки остается некоторое количество окалины, которую удаляют прогонкой шара. При любом количестве стыков шар прогоняется только один раз, после сварки последнего стыка. Этот шар является одновременно и контрольным. Его диаметр 0,8-0,86 внутреннего размера трубы.