20.09.2019

Стохастические дифференциальные уравнения и их приложения. Анализ явных численных методов решения стохастических дифференциальных уравнений


Специальность: Прикладная математика и информатика и Прикладная математика и информатика

Целью дисциплины «Стохастические дифференциальные уравнения и их применение» является получение знаний в области теории случайных процессов, знакомство студентов с численными методами решения стохастических дифференциальных уравнений, получение представления о генераторах случайных чисел, и изучение возможности распараллеливания программ, используя среду OpenMP.

Курс предполагает, что полученные теоретические знания в области теории случайных процессов и навыки параллельного программирования слушатели могут в дальнейшем использовать при решении прикладных задач нелинейной динамики сосредоточенных и распределенных систем при учете шумов и флуктуаций.

В результате освоения дисциплины обучающийся должен:

Знать:

– базовые алгоритмы вычислительной математики для решения задач стохастической динамики, условия их применимости.

Уметь :

– определять и профессионально реализовывать необходимые для решения прикладных задач стохастической динамики вычислительные алгоритмы, анализировать полученные результаты;

– профессионально разрабатывать и использовать программное обеспечение для решения прикладных задач;

Проводить процедуры корректности работы реализуемых численных методов.

Владеть :

– вычислительными методами нелинейной динамики;

– современными инструментальными вычислительными средствами.

Тема 1. Вычислительные методы для сосредоточенных динамических систем с шумовыми источниками.

Тема 2. Численное исследование неавтономных динамических систем с шумовыми источниками.

Тема 3. Численное исследование распределенных систем с шумовыми источниками.

Выполнение практических заданий на следующие темы

  • «Исследование характеристик генераторов случайных чисел»
  • «Распараллеливание в среде OpenMP»
  • «Численное моделирование вероятностных и временных характеристик джозефсоновского контакта»
  • «Индуцированные шумом эффекты изменения характеристик генерации нелинейных систем (резонансная активация, когерентный и стохастический резонанс, шумо-индуцированное увеличение времени возникновения отклика)»

Литература

а) основная литература:

  1. А.Н. Малахов, Кумулянтный анализ случайных негауссовских процессов и их преобразований, Москва, Советское радио, 1978).
  2. К.В. Гардинер, Стохастические методы в естественных науках, Москва, "Мир", 1986.
  3. В.И. Тихонов, М.А. Миронов, Марковские процессы, Москва, Советское радио, 1977.
  4. Л.А. Понтрягин, А.А. Андронов, А.А. Витт, О статистическом рассмотрении динамических систем, Журнал экспериментальной и теоретической физики. - 1933. - Т. 3, № 3. - С. 165-180.
  5. А.Н. Малахов, Флуктуации в автоколебательных системах, M.: Наука, 1968, с. 660.

б) дополнительная литература:

  1. A.N. Malakhov, A.L. Pankratov, Evolution times of probability distributions and averages - Exact solutions of the Kramers" problem, Adv. Chem. Phys., 121, 357-438 (2002).

в) программное обеспечение и Интернет-ресурсы

http://www.df.unipi.it/~mannella/papers/algorithms/SDE_on_a_computer.pdf

Описание стандарта OpenMP. http://parallel.ru/tech/tech_dev/openmp.html

Поведение многих реальных систем подвержено флуктуациям и в этом смысле не описывается строгими детерминированными законами. В качестве примеров можно указать броуновское движение, колебания стрелки гальванометра, флуктуации в электрических цепях и т. д. В таких случаях говорят о стохастических процессах, в которых рассматриваются вероятности реализации тех или иных конкретных условий. При этом уравнения, определяющие свойства системы, становятся уравнениями для случайных переменных, т.с. стохастическими уравнениями.

Различают три основных типа стохастических дифференциальных уравнений в соответствии с формами, в которых случайные элементы входят в уравнение:

  • 1) случайные начальные условия;
  • 2) случайные действующие силы;
  • 3) случайные изменения коэффициентов уравнения, зависящих от параметров системы.

Типичный пример уравнения первого типа - это уравнение движения частицы, определяемое законами, когда случайный элемент обусловлен только неопределенностью начальных условий.

Во втором случае задается стохастический процесс, определяющий случайную действующую на систему силу. Типичный пример - броуновское движение частицы под действием случайных сил.

В третьем случае параметры системы представляют собой случайные переменные. Например, электрическая цепь, в которой случайным образом меняется емкость конденсатора.

Разумеется, возможны ситуации, когда случайные элементы возникают в результате комбинации различных действующих причин. В качестве примера, позволяющего проиллюстрировать описываемую проблему без детального анализа различных вероятностных моментов, рассмотрим стохастическое уравнение первого порядка:

которое описывает одномерное движение классической частицы под действием силы трения, пропорциональной скорости v(t)> и некоторой «случайной» силы, описываемой функцией u(t).

Отметим, что несмотря на то, что уравнение (1) формально выглядит как второй закон Ньютона и в этом смысле является «точным» для механического поведения классической частицы, в действительности оно является модельным, так как в нем использовано модельное выражение для силы сопротивления движению в сплошной среде.

Формальное решение уравнения (1) записывается в виде

однако случайный, непредсказуемый характер поведения функции u(t) делает невозможным обычный путь решения этого уравнения, связанный с вычислением входящего в выражение (2) интеграла.

Для дальнейшего решения задачи следует задать ансамбль реализаций случайной силы u(t) и провести усреднение всех фигу- рируемых в (2) величин по этому ансамблю. Обозначая средние значения угловыми скобками, получим

Простейший ансамбль реализаций случайной величины - это так называемый «белый шум», при котором справедливы соотношения


где 6(т) - 6-функция Дирака. Соотношения (4) соответствуют независимым случайным значениям величины u(t) в разные моменты времени. В случае «белого шума» (4) уравнение (3) дает т.е. средняя скорость частицы убывает со временем по экспоненциальному закону. Рассмотрим теперь (v 2 (f)). Учитывая равенство

с помощью (2) и (4) получим

При стремлении / ->

к величине, равной кТ/т , где к - постоянная Больцмана; Т - абсолютная температура. Поэтому С/2а = кТ/т, и соотношение (7) переписывается в виде

Равновесие практически устанавливается при значениях времени / » 1 / а. Приближение (4) используется при описании процессов типа броуновского движения, когда зависящая от скорости сила вязкого трения существует и в отсутствие флуктуаций воздействия среды на частицу, a u(t) описывает чисто случайную силу.

Теперь рассмотрим зависимость от времени координаты х броуновской частицы. Считая х(0) = 0, имеем

Для при этом получаем следующее выражение:

С помощью соотношений (2) и (4) для (v(s)v(p )) имеем:


Учитывая соотношения (4) и (8), корреляционной функции (v(s)v(p)) можно придать вид

после чего для (х 2 (/)) имеем

Выражение для среднего значения квадрата смещения частицы оказывается разным в двух предельных случаях больших (/ » 1 /а) и малых (/ / а) времен. С помощью (13) находим

Из (14) следует, что на больших временах броуновская частица движется стохастически. Наоборот, при малых временах, как следует из (15), система обнаруживает «динамическое поведение», хотя это поведение соответствует не отдельной частице, а некоторому усредненному образу, так как речь идет не о х 2 (/), а о среднем значении этой величины.

Отметим, что два последовательных характерных этапа эволюции системы, соответствующие формулам (14) и (15), возникают при использовании в уравнении (1) силы сопротивления, пропорциональной скорости. Сама такая сила устанавливается спустя некоторый промежуток времени / с, по истечении которого можно представить результат взаимодействия выделенной частицы с окружающими частицами как некоторую усредненную постоянно действующую силу. Поэтому в соотношении (15) более правильным будет записать t c На временах, меньших t c , поведение выбранной частицы описывается чисто динамически. В принятом подходе t c выступает именно как феноменологический параметр, оценить или вычислить который можно только в рамках более детальной модели.

При более общем подходе к описанию стохастических систем и, в частности, к описанию броуновского движения вводят представление о функциях распределения р(х 0 , / 0 |х, г), определяющих вероятность обнаружить броуновскую частицу в интервале (х, x + dx) в момент /, при условии, что в момент / 0 она была в точке Xq. (Для простоты опять рассматривается одномерное движение.) Функция распределения считается нормированной:

Кроме того, эта функция удовлетворяет начальному условию, поэтому

Вероятности переходов, взятые для последовательных промежутков времени, считаются независимыми, поэтому произведение

соответствует вероятности обнаружить частицу в момент времени t + dt в области (х, x + dx), если в момент / 0 она находилась в точке х 0 , а в момент/ - в области (х", х" + dx"). Проинтегрировав по всем промежуточным состояниям х" в момент /, получаем вероятность р(дсо, / 0 |х, t + dt). Поэтому

Это - уравнение Смолуховского (нелинейное интегральное уравнение). Оно служит основой для вывода линейного дифференциального уравнения Фоккера-Планка, широко используемого при рассмотрении свойств стохастических систем - динамических систем с флуктуирующими параметрами. Обобщение рассмотрения на трехмерный случай не представляет особого труда и приводит к дифференциальным уравнениям в частных производных.

Широкое распространение при изучении стохастических явлений самой различной природы получило так называемое master equation - управляющее уравнение

В этом соотношении w, - вероятность нахождения системы в состоянии, характеризуемом набором характеристик / (квантовых чисел, если речь идет о физической системе), Ру - вероятность перехода в единицу времени из состояния j в состояние /: Ру > 0. В теоретической физике уравнение (19) называется уравнением кинетического баланса Паули, а вероятности w, трактуются как диагональные элементы статистического оператора в собственном представлении.

Почти «очевидное» из интуитивных соображений, это уравнение может быть обосновано с помощью достаточно строгих соображений или выведено на основе других уравнений, например с помощью уравнения С мол ухо вс кого. Действительно, представим вероятность р(х", /| х, t + dt) в виде

где первое слагаемое в правой части характеризует вероятность частице остаться через dt в точке х", а второе - вероятность перейти за то же время dt в точку х. Учитывая условие нормировки (16), легко с помощью (20) получить соотношение

Подставляя (20) в уравнение Смолуховского (18), с учетом (21) приходим к соотношению

Из соотношения (22) непосредственно следует дифференциальное уравнение

которое в точности соответствует уравнению (19).

Управляющее уравнение (19) сохраняет нормировку распределения вероятностей и является уравнением релаксационного типа: описываемая этим уравнением система с течением времени необратимо рслаксирует к некоторому не зависящему от времени стационарному состоянию. Выбор того или иного модельного представления для вероятностей переходов /* позволяет использовать это уравнение для описания самых различных стохастических процессов. В частности, уравнение Паули содержит в себе в качестве частного случая кинетическое уравнение Больцмана и некоторые его квантовые обобщения.

Для удобства математического исследования этого уравнения оно переписывается в матричном виде для вектора состояния W с компонентами ш,:

где А - матрица перехода с элементами

При вещественных вероятностях переходов /* матрица Л эрмитова, т.е. ее собственные значения вещественны, а собственные векторы ортогональны. Формальное решение уравнения (24) записывается в виде

где W(0) - вектор состояния в начальный момент времени. Свойство эрмитовости матрицы Л позволяет легко доказать релаксационный характер уравнения (19).

Задачи и упражнения

  • 1. Покажите, что v(t), определяемое формулой (2), является решение уравнения (1).
  • 2. Докажите справедливость соотношений (6) и (7).
  • 3. Получите соотношение (12).
  • 4. Получите формулу (13) для (х 2 (/)}.
  • 5. Используя (13), докажите соотношения (14) и (15).
  • 6. Используя соотношения (5) и (9), найдите величину (*(/)) и проанализируйте результат в двух предельных случаях: at и я/»1. Сравните с соотношениями (14) и (15).
  • 7. Получите соотношение (22).

Программа

курса "Стохастические дифференциальные уравнения"

лектор А.В.Булинский

(кафедра высшей математики МФТИ)

Некоторые задачи , приводящие к стохастическим аналогам обыкновенных дифференциальных уравнений (стохастические модели, возникающие в физике, технике, биологии и финансовой математике).

Вспомогательный математический аппарат. Условное математическое ожидание и его свойства (линейность, "телескопичность", неравенство Иенсена и др.). Фильтрованные вероятностные пространства. Моменты остановки, их свойства, примеры. Мартингалы, субмартингалы, супермартингалы с дискретным и непрерывным временем. Фундаментальные неравенства. Теоремы о сходимости. Локальные мартингалы и семимартингалы. Разложение Дуба-Мейера. Непрерывные и квадратично интегрируемые мартингалы.

Броуновское движение (винеровский процесс), его различные конструкции. Поведение траекторий: недифференцируемость с вероятностью единица, локальные максимумы, точки роста. Броуновское семейство. Варианты марковского и строго марковского свойства броуновского движения (семейства). Применения к решению граничных задач (проблема Дирихле). Формула Фейнмана-Каца. Локальное время броуновского движения, аддитивные функционалы. Векторное броуновское движение. Процессы Бесселя. Фрактальное броуновское движение.

Стохастическое исчисление. Построение интеграла Ито, свойства интеграла (в том числе мартингальность интеграла Ито с переменным верхним пределом). Интеграл Стратоновича. Связь между двумя видами стохастического интеграла. Интегрирование по семимартингалу. Формула Ито замены переменных и ее дальнейшие обобщения. Примеры.

Стохастические дифференциальные уравнения. Сильные и слабые решения. Проблемы существования и единственности решений (в сильном и слабом виде). Результаты Скорохода, Ятамада и Ватанабе. Решение уравнения Ланжевена. Процесс Орнштейна-Уленбека. Марковское свойство сильного решения стохастического дифференциального уравнения. Теорема Энгельберта- Шмидта. Преобразование Камерона-Мартина-Гирсанова как метод построения слабых решений. Мартингальная проблема Струка-Варадана, связь со стохастическими дифференциальными уравнениями. Различные подходы к изучению диффузионных процессов.

Применения стохастических дифференциальных уравнений. Проблемы фильтрации (фильтр Калмана-Бьюси). Задача об оптимальной остановке. Стохастическое управление. Диффузионная модель цены акций: от модели Башелье к модели Самюэлсона. Опционы, справедливая цена. Формула Блэка-Шоулса. Оптимальные инвестиции и потребление.

Дальнейшие исследования. Понятие о квантовых стохастических дифференциальных уравнениях и марковской эволюции открытых квантовых систем. Проблематика стохастических дифференциальных уравнений в частных производных. Некоторые методы численного решения стохастических дифференциальных уравнений.

Литература

1. Оксендал Б. Стохастические дифференциальные уравнения. МЦМИО, 2002.

2. Ширяев А.Н. Основы стохастической финансовой математики, т.1,2. М:Фазис, 1998.

3. Жакод Ж., Ширяев А.Н. Предельные теоремы для случайных процессов, т.1,2. М:Физматгиз, 1994.

4. Булинский А.В., Ширяев А.Н. Теория случайных процессов. М:Физматлит, 2003.

5. Kallenberg O. Foundations of Modern Probability. Springer, New York, 1997.

6. Karatzas I., Shreve S.E. Brownian Motion and Stochastic Calculus. Springer, New York, 1997.

7. Parthasarathy K.R. An Introduction to Quantum Stochastic Calculus. Birkhauser, Basel, 1992.

Вернемся к динамическому уравнению первого порядка (система с 1/2 степени свободы), примером которого было уравнение для малых флуктуаций амплитуды в автогенераторе [первая формула (29.1)], т. е. уравнению вида

С таким же уравнением мы имеем дело в задачах о скорости и одномерного движения частицы массы в среде с вязким трением или о смещении s этой частицы, но лишенной массы и привязанной к пружине с коэффициентом упругости , или о напряжении V на емкости -контура , или о токе I в -контуре и т. д.

В соответствии со сказанным в § 28, мы рассчитываем на то, что при действии на динамическую систему (35.1) достаточно «густых» (по сравнению со временем установления ) однородных толчков отклик будет непрерывным однородным

марковским процессом с вероятностью перехода удовлетворяющей уравнению Эйнштейна - Фоккера

т. е. уравнению (29.2), но в одномерном случае, когда нет зависимости v от второй переменной. По способу, мотивированному в § 28, коэффициент в (35.2) приравнен выражению для х, т. е. правой части уравнения (35.1):

При начальном условии

решение уравнения (35.2) выражается нормальным законом

[см. (29.5) и (29.6)]. В пределе при , т. е. для t , формула (35.3) переходит в не зависящее от стационарное распределение . В задаче о скорости и частицы в вязкой среде, когда распределение должно быть максвелловским:

так что откуда Аналогичные выражения для В можно написать и в остальных перечисленных выше задачах - просто как следствие теоремы о равнораспределении энергии по степеням свободы: средняя энергия системы с 1/2 степени свободы должна быть равна (в данном случае

Такова при сделанных исходных допущениях чисто вероятностная схема решения задачи о флуктуациях. Теперь мы поступим иначе. Введем в уравнение (35.1) случайную (или флуктуационную) силу :

Если для конкретности рассуждать над задачей о движении частицы в неограниченной вязкой среде, то речь идет об уравнении движения

в котором воздействие среды на частицу разбито на две части: систематическую силу трения и случайную силу

Предполагая, что систематическая сила трения выражается законом Стокса (для сферической частицы радиуса а имеем , где вязкость жидкости), мы дёлаем два допущения.

Во-первых, должно быть выполнено условие ламинарности обтекания частицы, т. е. малости числа Рейнольдса:

где плотность жидкости. Если для и взять значение средней квадратичной скорости теплового движения [и - плотность вещества частицы], т. е. учесть самые быстрые дрожания частицы, то

При имеем что даже для молекулярных размеров а дает значение Таким образом, условие ламинарности выполнено.

Во-вторых, полная систематическая сила, действующая на шар, движущийся в вязкой несжимаемой жидкости, равна, согласно Буссине,

где - присоединенная масса, равная половине массы, вытесненной частицей жидкости. В уравнении (35.6) из полной силы F удержан только первый член. Но при второй и третий члены одного порядка с . В отношении это несущественно, так как роль этого члена сводится лишь к изменению эффективной массы частицы. Более важен третий член, выражающий вязкое гидродинамическое последействие (см. §§ 15 и 21), при учете которого система приобретает бесконечное множество степеней свободы.

При наличии вязкого (а тем самым и вероятностного) последействия средний квадрат смещения частицы был найден В. В. Владимирским и Я. П. Терлецким . Обычное выражение оказывается справедливым лишь для промежутков времени t, достаточно больших по сравнению со временем релаксации Мы ограничимся упрощенной постановкой задачи, основанной на уравнении (35.5).

Мы будем обращаться с этим стохастическим уравнением так, как если бы это было обычное дифференциальное уравнение.

Проинтегрировав его при начальном условии получаем

Так как по предположению усреднение (35.7) по ансамблю случайных сил дает

т. е. для х получается тот же динамический закон, что и из уравнения (35.1), и из уравнения Эйнштейна - Фоккера (35.2). Найдем теперь дисперсию . Согласно (35.7) и (35.8)

и, следовательно, для получения надо задать функцию корреляции случайной силы . Можно задать любую функцию корреляции, допускаемую общими ограничениями ее вида, но мы сделаем специальное предположение, а именно примем, что -стационарный дельта-коррелированный процесс:

где С - постоянная. Заметим, что тем самым импульс силы

представляет собой непрерывную случайную функцию с независимыми приращениями и, следовательно, распределен нормально при любом t (§ 34).

Подставив (35.10) в (35.9), находим

(35.11)

Если положить , то это совпадет с выражением (35.4) для полученным из уравнения Эйнштейна - Фоккера (35.2).

Мы нашли только моменты но можно утверждать больше. Поскольку приращение импульса распределено при всяком нормально, постольку разность представляет собою, согласно (35.7), сумму (или, точнее, предел суммы) нормально распределенных величин. Следовательно, распределение тоже дается гауссовым законом с дисперсией (35.11). Это условное распределение (при условии ), если принять просто совпадает с (35.3). Далее, нетрудно убедиться прямой подстановкой, что такого вида условные вероятности удовлетворяют уравнению Смолуховского (являются вероятностями перехода), т. е. процесс оказывается марковским. Таким образом, если в стохастическом дифференциальном уравнении (35.5) случайная сила ) стационарна и дельта-коррелирована [см. (35.10)], то отклик -диффузионный марковский процесс, у которого вероятность перехода удовлетворяет уравнению Эйнштейна - Фоккера с

Оба подхода - основанный на уравнении Эйнштейна - Фоккера и основанный на стохастическом дифференциальном уравнении для случайной функции -оказываются в рассмотренной задаче равносильными. Это, конечно, не означает их тождества за пределами этой задачи. Уравнение Эйнштейна - Фоккера обладает, например, несомненным преимуществом в тех случаях, когда наложены определенные ограничения множества возможных значений случайной функции (наличие отражающих или поглощающих стенок и т. п.), учитываемые просто соответствующими граничными условиями. При ланжевеновской постановке задачи введение такого рода ограничений довольно сложно. С другой стороны, как это уже было подчеркнуто, ланжевеновский метод не требует, чтобы сила обязательно была дельта-коррелирована.

Стоит, быть может, отметить, что как раз в случае дельта-коррелированной силы оперирование дифференциальным уравнением (35.5) имеет в известном смысле условный характер. Это уравнение написано не для х, а для мгновенного значения . Но при бесконечно-частых толчках отклик - не дифференцируемая функция, т. е. не существует (ни в каком из вероятностных смыслов понятия производной). Таким образом, все «дифференциальное уравнение» имеет лишь некий символический смысл. Это надо понимать следующим образом.

Формальное интегрирование уравнения (35.5) приводит к решению (35.7) для , в котором уже нет никаких неприятностей, поскольку оно содержит дельта-коррелированную дилу только под интегралом. Другими словами, уравнение (35.5) -

это (в рассматриваемом случае дельта-коррелированной силы) математически некорректная запись для последующего - уже вполне осмысленного и, в конечном счете, единственно интересующего нас - решения данного уравнения. Оправданием такого подхода являются хорошо известные преимущества оперирования дифференциальными уравнениями при постановке задачи - возможность исходить из общих динамических законов, возможность использования всего существующего арсенала математических средств для получения решения и т. д. Мы не говорим уже о том, что при не дельта-коррелированной все оговорки становятся излишними: стохастические дифференциальные уравнения для самих случайных функций приобретают тогда вполне определенное математическое содержание и, сверх того, позволяют выйти за пределы класса марковских процессов.

Постоянная С в функции корреляции (35.10) характеризует, очевидно, интенсивность случайных толчков. Вернемся к переменным, в которых сила и отклик системы энергетически сопряжены, т. е. произведение силы на производную отклика представляет собой мощность, отдаваемую системе. Это справедливо, например, для силы в уравнении (35.6), так как отдаваемая частице мощность равна . Уравнение (35.6) переходит в (35.5), будучи поделено на массу частицы т. Таким образом, так что функция корреляции настоящей силы в соответствии с (35.10), равна

Мы установили выше, что и что в задаче о скорости брауновской частицы . Следовательно, постоянная С в функции корреляции силы равна

т. е. связана только с коэффициентом систематического трения h. В задаче о токе в -контуре под надо понимать случайную тепловую (§ 28), а под h - активное сопротивление контура R, так что корреляционная постоянная для будет

Анатолий Афанасьевич ЛЕВАКОВ

СТОХАСТИЧЕСКИЕ

ДИФФЕРЕНЦИАЛЬНЫЕ

УРАВНЕНИЯ

Леваков, А. А. Стохастические дифференциальные уравнения/

А. А. Леваков. Минск: БГУ, 2009. 231 с. ISBN 978-985-518-250-5.

В монографии изложена теория стохастических дифференциальных уравнений, являющаяся одним из основных средств исследования случайных процессов. Рассмотрены три раздела теории стохастических дифференциальных уравнений: теоремы существования, теория устойчивости и методы интегрирования. Приведены факты из функционального анализа, теории многозначных отображений и случайных процессов, на которых основано изложение книги.

Для специалистов в области теории вероятностей, теории дифференциальных уравнений и их приложений, а также преподавателей, аспирантов и студентов математических факультетов вузов.

Библиогр.: 171 назв.

Печатается по решению Редакционно-издательского совета Белорусского государственного университета

Рецензенты: член-корреспондент НАН Беларуси,

доктор физико-математических наук, профессор Л. А. Янович; доктор физико-математических наук, профессор Н. В. Лазакович

ISBN 978-985-518-250-5

c Леваков А. А., 2009

ПЕРЕЧЕНЬ ОСНОВНЫХ ОБОЗНАЧЕНИЙ. . . . . . . . . . . . . . . . . . . . . . . . .

ВВЕДЕНИЕ. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

ГЛАВА 1. ПРЕДВАРИТЕЛЬНЫЕ СВЕДЕНИЯ. . . . . . . . . . . . . . . . . . . . . . .

1.1. Функциональный анализ. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

1.2. Случайные процессы. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

1.3. Многозначные отображения и многозначные

случайные процессы. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

1.4. Полудинамические системы. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

1.5. Дифференциальные включения. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

ГЛАВА 2. ТЕОРЕМЫ СУЩЕСТВОВАНИЯ ДЛЯ

СТОХАСТИЧЕСКИХ ДИФФЕРЕНЦИАЛЬНЫХ

УРАВНЕНИЙ И ВКЛЮЧЕНИЙ. . . . . . . . . . . . . . . . . . . . . . . . . . . .

2.1. Теорема существования решений стохастических

2.2. Теорема существования слабых решений стохастических

дифференциальных уравнений. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

2.3. Теорема существования β-слабых решений стохастических дифференциальных уравнений. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

2.4. Сильное и слабое существование, потраекторная и слабая единственность для стохастических дифференциальных уравнений и включений. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

2.5. Инвариантные множества. Теорема существования жизнеспособных решений стохастических дифференциальных включений. . . . . . . . . . . . 126

2.6. Теоремы существования решений стохастических дифференциальных уравнений с отражением от границы. . . . . . . . . . . 139

2.7. Одномерные стохастические дифференциальные уравнения. . . . . . . . . 142

ГЛАВА 3. СВОЙСТВА РЕШЕНИЙ СТОХАСТИЧЕСКИХ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ И ВКЛЮЧЕНИЙ. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

3.1. Зависимость решений стохастических дифференциальных уравнений от начальных условий. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

3.2. Исследование устойчивости стохастических дифференциальных уравнений методом функций Ляпунова. . . . . . . . . 157

3.3. Исследование устойчивости стохастических дифференциальных уравнений по нелинейному приближению. . . . . . . . . . . . . . . . . . . . . . . . . . . . 165

3.4. Критерий ограниченности в среднеквадратическом решений линейных стохастических дифференциальных систем. . . . . . . . . . . . . . . 174

3.5. Асимптотическая эквивалентность в среднеквадратическом обыкновенного дифференциального уравнения и возмущенной стохастической дифференциальной системы. . . . . . . . . . . . . . . . . . . . . . . . . 182

3.6. Среднеквадратические характеристические показатели стохастических систем. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185

ГЛАВА 4. МЕТОДЫ ИНТЕГРИРОВАНИЯ СТОХАСТИЧЕСКИХ ДИФФЕРЕНЦИАЛЬНЫХ СИСТЕМ. . . . . . . . . . . . . . . . . . . . . . . 188

4.1. Элементарные стохастические дифференциальные системы. . . . . . . . . 188

4.2. Уравнения Колмогорова. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207

4.3. Дифференциальные уравнения для условных математических ожиданий. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212

ЛИТЕРАТУРА. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

ПРЕДМЕТНЫЙ УКАЗАТЕЛЬ. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 228

ПЕРЕЧЕНЬ ОСНОВНЫХ ОБОЗНАЧЕНИЙ

B(x0 , r)

C(R+ , X)

шар в метрическом пространстве (X, ρ) с центром в точке x0 радиуса r, {x X | ρ(x, x0 ) < r}

дополнение к множеству A

транспонированная матрица

борелевская σ-алгебра топологического пространства T

замыкание выпуклой оболочки множества A

семейство всех непустых замкнутых подмножеств множества X

семейство всех непустых компактных подмножеств множества X

семейство всех непустых компактных выпуклых подмножеств множества X

пространство непрерывных функций, определенных на

R+ со

значениями

с метрикой ρ(f1 , f2 ) =

P k=1

2−

(06 t6 kk 1

βt (C(R+ , X))

F ([x]δ )

δ = coF ([x]δ )

Lp (T, E)

Scc (X)

под-σ-алгебра β(C(R+ , X)), порожденная f(s), 06 s6 t

замыкание объединения множеств F (x1 ) по всем x1 таким, что ρ(x, x1 )6 δ

замыкание выпуклой оболочки множества F ([x]δ )

пространство классов эквивалентности интегрируемых

по Бохнеру функций f: T → E таких, что kfkp =

T kf(t)kp dτ < ∞

семейство всех подмножеств множества X

семейство всех замкнутых выпуклых подмножеств множества X

математическое ожидание случайной величины x

распределение вероятностей случайной величины x

множество натуральных чисел

множество действительных чисел

R d×r

δ ij

δ (a)

tr(A) (Ω, F, P)

1A (x)

ССДУ п. в. п. н.

a b = min{a, b} a b = max{a, b} f g ha, bi kak

множество неотрицательных действительных чисел ε = {x X|ρ(x, A)6 ε}

ε-окрестность множества A

α¯(A, B) = sup(ρ(x, B)|x A)

полуотклонение по Хаусдорфу множест-

ва A от множества B

α(A, B) = max(α¯(A, B), α¯(B, A))

отклонение по Хаусдорфу множеств A и B

ВВЕДЕНИЕ

Поведение реального объекта, функционирующего в условиях естественных шумов, характеризуется некоторой неопределенностью, кроме того, в системах управления сложными системами обычно участвуют люди, для которых характерна некоторая неопределенность поведения. Описание таких систем при помощи детерминистских подходов не всегда отражает действительную картину функционирования объекта. Если моделью процесса является дифференциальное уравнение dx(t) = f(t, x(t)) dt, то для получения модели, учитывающей помехи типа белого шума, к правой части дифференциального уравнения прибавляют слагаемое вида g(t, x(t)) dW (t) и рассматривают стохастическое дифференциальное уравнение

dx(t) = f(t, x(t)) dt + g(t, x(t)) dW (t)

или в интегральной форме

x(t) = x0 +Z 0

f(s, x(s)) ds + Z 0

g(s, x(s)) dW (s),

где второй интеграл является интегралом Ито по броуновскому движению W (t). Возникновение и развитие стохастических интегралов и стохастических дифференциальных уравнений восходит к С. Н. Бернштейну, К. Ито, И. И. Гихману. К настоящему времени имеется огромная литература, посвященная стохастическим дифференциальным уравнениям, теория которых продолжает интенсивно развиваться и в настоящее время . К. Ито первый показал, что для липшицевых функций f, g уравнение (0.1) имеет единственное сильное решение, но для приложений, особенно для теории управляемых случайных процессов, важно доказательство теорем существования и единственности при более слабых условиях на отображения f и g. А. В. Скороход ввел новое понятие решения ¾слабое решение¿, допустив, что решение может быть определено на подходящем вероятностном пространстве с подходящим броуновским движением. Это позволило доказать теорему существования решений при условиях непрерывности коэффициентов уравнения. При

доказательстве был использован аналог ломаных Эйлера, однако из получающейся при этом последовательности процессов выбрать сходящуюся подпоследовательность невозможно. А. В. Cкороход с помощью перехода к другому вероятностному пространству и к другой последовательности процессов, но с теми же законами распределения построил последовательность процессов, сходящуюся к решению уравнения. В настоящее время при доказательстве большинства теорем существования используется именно такой подход. Следующий важный шаг получение Н. В. Крыловым оценок для распределений стохастических интегралов и доказательство с их помощью теоремы существования слабых решений стохастического дифференциального уравнения (0.1) с измеримыми по Борелю ограниченными функциями f, g

и невырожденной матрицей g (ν, λ, λ > gg> λ> νkλk). Эта теорема показывает существенное отличие стохастических дифференциальных уравнений от обыкновенных систем. Уравнение x˙ = f(t, x) с измеримой функцией f, вообще говоря, не имеет решений. В дальнейшем условие невырожденности матрицы g было ослаблено. Но чтобы теорема существования решений стохастических дифференциальных уравнений охватывала решения, аналогичные скользящим режимам для обыкновенных дифференциальных уравнений, например движения по поверхности, на которой коэффициент сноса f разрывен, а коэффициент диффузии g равен нулю, необходимо переходить, так же как

и для обыкновенных дифференциальных уравнений, к соответствующим стохастическим дифференциальным включениям. Так как получение именно скользящих режимов часто является целью управления, поскольку они слабо зависят от внешних воздействий, то доказательство теорем существования таких решений важная задача. Вопросам существования решений различных типов стохастических дифференциальных уравнений уделено большое внимание в книге.

Слабые решения используются при изучении тех свойств уравнений, которые связаны с мерой в пространстве траекторий, таких, как устойчивость процессов, вероятностное представление решений и т. д. Но если необходимо рассматривать конкретное свойство траекторий, например в теории управления диффузионными процессами, в теории фильтрации, тогда рассматривают сильные решения. При доказательстве теорем существования сильных решений важную роль иг-

рает принцип Ямады Ватанабэ: из существования слабых решений и потраекторной единственности следует сильное существование. Отметим, что принцип применим в различных ситуациях: для стохастических дифференциальных уравнений, для стохастических дифференциальных уравнений с отражением от границы, для стохастических дифференциальных включений. Проблему существования и единственности решений стохастических дифференциальных уравнений можно описать следующим образом. Есть уравнения, у которых нет слабых решений. Существуют уравнения, у которых имеются слабые решения на некотором вероятностном пространстве с подходящим броуновским движением, в то время как на других вероятностных пространствах с другими броуновскими движениями решений может и не быть. Если имеет место потраекторная единственность и уравнение обладает свойством слабого существования, то на любом вероятностном пространстве с любым броуновским движением существует единственное решение, и оно является сильным.

В книге показывается, что любое уравнение

dx(t) = f(t, x(t))dt + g(t, x(t))dW (t)

c измеримыми по Борелю локально ограниченными функциями f, g имеет слабое решение, но под слабым решением понимаем слабое решение стохастического включения

dx(t) F (t, x(t))dt + G(t, x(t))dW (t),

где F (t, x), G(t, x) некоторые многозначные отображения, соответствующие функциям f и g.

Мы рассматриваем лишь диффузионные уравнения марковского типа. Долгое время исследовались именно такие уравнения. Однако в теории фильтрации, в физике появляются стохастические уравнения с частными производными, которые, как правило, можно трактовать как стохастические уравнения в гильбертовом или банаховом пространстве. При изучении многих экономических проблем приходится рассматривать уравнения не по броуновскому движению, а по некоторым семимартингалам. В настоящее время теория стохастических уравнений по семимартингалам в банаховом пространстве успешно развивается, и несмотря на существенное усложнение ситуации, многие

методы и идеи уравнений в конечномерных пространствах продолжают работать и в банаховом пространстве с соответствующими изменениями .

Первая глава посвящена изложению сведений из функционального анализа, теории случайных процессов, теории динамических систем

и дифференциальных включений, используемых в монографии. Книга предназначена в первую очередь для студентов факультета прикладной математики и информатики и механико-математического факультета Белорусского государственного университета, и предлагаемый вариант сведений продиктован теми курсами по фундаментальной математике, которые читаются на этих факультетах, а также потребностями теории стохастических дифференциальных уравнений. Конечно, набор сведений нельзя признать полным.

В параграфах 2.1 2.4, 2.7 второй главы доказываются теоремы существования слабых и сильных решений стохастических дифференциальных уравнений и включений, охватывающие и решения типа скользящего режима для обыкновенных дифференциальных уравнений.

Если уравнение рассматривается в некоторой области D, то при достижении траекториями границы D одна из возможностей их дальнейшего продолжения заключается в отражении от границы внутрь области. Воздействие на решение на границе представляют как своеобразный снос в стохастическом уравнении, т. е. рассматривают уравнение dx(t) = f(t, x(t))dt + g(t, x(t))dW (t) + dK(t), где K(t) непрерывный процесс ограниченной вариации, возрастающий только на границе. Впервые диффузионные процессы с отражением от прямой исследовал А. В. Скороход . Исследованию проблемы Скорохода

и ее приложениям к стохастическим дифференциальным уравнениям посвящены работы . Наиболее общие условия, обеспечивающие существование слабых решений стохастических дифференциальных уравнений с отражением от границы, даны в (предложение 1.54). Различные аспекты проблемы рассматривались в работах . Теорема существования слабых решений стохастических дифференциальных включений с отражением от границы устанавливается в параграфе 2.6.

Решения, которые при всех t > 0, принадлежат заданному множеству K, называют жизнеспособными. Первые условия, обеспе-